
Plasma parameters from the Rosetta

LAP instrument

Claes Weyde
Swedish Institute of Space Physics, Uppsala

November 27, 2006

2

Abstract

The focus of this thesis is the extraction of plasma parameters using the Lang-
muir probes mounted on the Rosetta spacecraft. These probes, developed by the
Swedish Institute of Space Physics, Uppsala, measures properties of the plasma
environment such as electron temperature and ion density. Using Matlab, routines
are developed to analyse the data.

We investigate the electron current produced by the photoelectric effect on the
spacecraft and determine a model to use in describing it mathematically. We no-
tice a remnant current, whose origin is unaccounted for. Two hypotheses are given;
a leak-current from the probe to the spacecraft or influence from the spacecraft
body on the plasma being measured by the probes.

We use the analysis routines on the first Earth fly-by performed by Rosetta and
compare it to independent sources, the Advanced Composition Explorer (ACE)
and anther instrument on Rosetta, the Mutual Impedance Probe (MIP). The phys-
ical parameters extracted (with the exclusion of the electron temperature) by the
routines seem to be consistent with theory and with independent sources.

3

4

Sammanfattning

Sammanfattning

Rosetta är ett ESA-finansierat rymdprojekt vars mål är att utforska fysiken hos
kometen 67 P/Churyumov-Gerasimenko, bla. genom att placera en landare p̊a dess
yta. Ombord p̊a rymdfarkosten Rosetta finns tv̊a s.k. Langmuir prober. Dessa är
utvecklade av institutet för rymdfyisk i Uppsala och är i princip små väderstationer
som är anpassade för att mäta olika parametrar hos ett plasma, parametrar s̊asom
jondensitet och elektrontemperatur. Detta examensarbete fokuserar p̊a att fr̊an de
data som Langmuir proberna p̊a Rosetta samlar, extrahera de olika plasmaparame-
trarna. Matlab rutiner har utvecklats i syfte att sköta denna analys automatiskt.

Vi undersöker den elektronström som produceras av den fotoelektriska effekten och
bestämmer den model som enklast och bäst beskriver strömmarna matematiskt.
Vi upptäcker en ström som inte förväntas. Tv̊a hypoteser ges; en läckström fr̊an
proberna till rymdfarkosten och/eller rymdfarkostkroppens potentials p̊averkan p̊a
det omgivande plasmat.

Vi använder slutligen v̊ara analysrutiner p̊a den första jordförbiflygningen som
Rosetta genomförde i mars 2005 och jämför v̊ara resultat med oberoende källor,
dels en obereonde rymdfarkost, the Advanced Composition Explorer (ACE), och
dels ett annat instrument p̊a Rosetta, the Mutual Impedence Probe (MIP). De
fysikaliska parametrar vi erh̊aller med analysrutinerna, exklusive elektrontemper-
aturen, verkar vara konsistenta med teori och oberoende källor.

5

6

Contents

1 Introduction 9

1.1 The Rosetta mission . 9

1.2 Instrumentation - What is measured? 10

1.3 The plasma surrounding Earth . 11

1.3.1 Rosettas trajectory near Earth 13

2 Plasma physics 15

2.1 Plasma - the fourth state of matter 15

2.2 Collective behaviour . 15

2.3 Debye shielding and quasineutrality 16

2.4 Particle motion . 17

3 Probe theory 19

3.1 The Langmuir Probe . 19

3.2 Orbital motion limited theory . 20

3.3 Bias-, probe- and spacecraft potentials 21

3.4 Probe currents . 22

3.4.1 Electron and ion currents 23

3.4.2 Ion Current for supersonic flow 24

3.4.3 Photoelectron current . 24

3.4.4 Putting it all together . 25

4 Using the probes in space 27

4.1 Modes of operation . 27

7

8 CONTENTS

4.2 Bias sweeps - the CV curve . 28

4.3 Complications . 29

4.3.1 v × B effects . 29

4.3.2 Wake effects . 30

4.3.3 Magnetic effects . 31

5 Investigating the photocurrent 33

5.1 Introduction . 33

5.2 Slope of the sweeps . 34

5.3 Models . 37

5.4 Performing the investigation . 37

5.4.1 Comparing the models . 38

5.5 The LAP dance . 41

5.6 Conclusion . 45

6 Automatic fit routine 47

6.1 Parameterisation . 47

6.2 Algorithm . 48

6.2.1 Data handling . 49

6.2.2 The spacecraft potential . 49

6.2.3 Walkthrough . 51

6.3 Functions . 55

6.3.1 extraction.m . 56

6.3.2 fitting2.m . 57

6.3.3 preliminaries.m . 59

6.3.4 fit data2.m . 61

6.3.5 model.m . 64

7 Results and discussion 65

7.1 The first flyby of Earth . 65

7.2 Vsc and the plasma density . 66

7.2.1 Spacecraft potential dependence on density 66

7.2.2 Comparison to ACE . 66

CONTENTS 9

7.2.3 Comparison Vsc to n from LAP 69

7.3 The spacecraft potentials . 70

7.4 Comparing the data - MIP . 72

7.5 Conclusion . 73

7.5.1 Outlook . 73

7.6 Acknowledgements . 74

A User’s guide to Grafical 77

A.1 Appearance and plots . 78

A.1.1 Loading data . 78

A.1.2 The fitting panel . 80

A.1.3 The position and velocity panel 83

A.1.4 Save Data . 84

A.1.5 Set spacecraft potential manually 87

B The software routines 89

B.1 Main program . 89

B.1.1 grafical.m . 89

B.1.2 Rosetta info.m . 107

B.2 Handling the data . 108

B.2.1 get datagraf.m . 108

B.2.2 adjust data.m . 111

B.2.3 remove dat.m . 112

B.2.4 search dat.m . 113

B.2.5 save data.m . 114

B.3 Setting the position and velocity . 117

B.3.1 set r v.m . 117

B.3.2 get traj.m . 120

B.4 Fitting routines . 126

B.4.1 extraction.m . 126

B.4.2 fitting2.m . 127

B.4.3 preliminaries.m . 131

10 CONTENTS

B.4.4 zero cross.m . 132

B.4.5 moving average.m . 133

B.4.6 find scpot.m . 134

B.4.7 d2.m . 135

B.4.8 fit single e.m . 136

B.4.9 determine ecl.m . 137

B.4.10 fit data2.m . 138

B.4.11 model.m . 150

B.4.12 compute c.m . 155

B.4.13 weighting.m . 156

B.4.14 choose fit.m . 157

B.4.15 errorest.m . 158

B.4.16 compare fits.m . 158

B.4.17 par2phys2.m . 160

B.4.18 get I parts.m . 162

Chapter 1

Introduction

This master thesis is written with the purpose of looking at the data collected by
the Rosetta spacecraft as it moves through the solar wind and especially when it
approaches Earth, since this is a region where plasma parameters will change a lot.
The idea is to see what really can be measured by the Langmuir probes on Rosetta
and to write a software which will extract plasma parameters. Furthermore, this
software should be used on the first Earth flyby to determine values of the plasma
density and temperature. This extraction can then be used as a tool to evaluate the
software as well as the performance of the probes.

Here we will introduce the Rosetta space mission as well as briefly look at the
plasma close to Earth, in order to get an idea of what kind of parameters to ex-
pect.

1.1 The Rosetta mission

The Rosetta mission is a space mission by the the European Space Agency (ESA).
Initially the goal of the mission was to rendezvous with Comet 46 P/Wirtanen,
but due to postponement of the launch a new target had to be set. The choice
fell upon Comet 67 P/Churyumov-Gerasimenko. The mission is an ambitious one;
Rosetta will not only follow the comet (orbiting around it) for more than a year, it
will even place a lander on its surface, providing the means of studying the nucleus
of the comet in situ, something that has never been done before.

Launched the 2nd of March 2004 from Kourou, French Guiana, the Rosetta space-
craft (s/c) is currently speeding through space on way to the comet. The trip will
take 10 years. An Earth flyby has already been performed (in March 2005) to be

11

12 CHAPTER 1. INTRODUCTION

followed by two more and one flyby of Mars. The purpose of them is to provide the
energy for the spacecraft to be able to attain the comet’s velocity and to finally
rendezvous in 2014. The flybys are great opportunities to test the instruments on
board the s/c in at least semi-known environments, to see if everything is working
properly and to investigate these environments further.

1.2 Instrumentation - What is measured?

Rosetta is carrying an exhaustive set of instruments, 16 instruments on the orbiter
and another ten on the lander. Both remote and direct sensing techniques are
used. Examples of the former are cameras and radio equipment. The Langmuir
Probe (LAP) is an example of the latter and is the main emphasis of this report.

The goal of the mission is to get a better understanding of the origin of comets and
the solar system. Since comets are among the oldest bjoects traversing space in-
formation gathered may help scientists understand the origin of our solar system.
The LAP will investigate the plasma environment with regards to plasma den-
sity, temperature, flow speed etc. This will give information regarding the comets
interaction with the solar wind. LAP is part of a group of instruments called
the Rosetta Plasma Consortium (RPC) (Table 1.1), which all measure different
aspects of the plasma close to the s/c. Used together, they will provide a good
picture of the plasma environment surrounding 67 P/Churyumov-Gerasimenko.

Acronym Name Measures

LAP Dual Langmuir Probe In-
strument

Plasma density, temperature, flow
speed, electric field < 8 kHz, etc.

MIP Mutual Impedance Probe Plasma density, temperature, flow
speed, electric field 7 kHz – 3.5 MHz,
etc.

MAG Fluxgate Magnetometer Magnetic field < 25 Hz
IES Ion and Electron Sensor Ion and electron spectra (energy and

direction)
ICA Ion Composition Analyzer Ion spectra (energy, angle and mass)
PIU Plasma Interface Unit Coordination of the RPC sensors

Table 1.1: The Rosetta Plasma Consortium

Rosetta carries two Langmuir probes[1] built at the Swedish Institute of Space
Physics, Uppsala division (IRF-U) in Uppsala. The probes are mounted on the
tips of two deployable booms (Figure 1.1). Their shape is spherical with a diameter

1.3. THE PLASMA SURROUNDING EARTH 13

of 5 centimetres. The sensor is made of titanium and has a surface coating of
titanium-nitride, giving it a golden colour.

Figure 1.1: Artists impression of the Rosetta orbiter and lander. The LAP probes
are encircled. Figure from ESA website[2]

1.3 The plasma surrounding Earth

Most of the data analysed in this thesis were gathered during the first Earth fly-
by for reasons that will become apparent (see Chapter 7). For this reason it is
important to have a good understanding of the plasma environment surrounding
Earth. This section provides a brief overview of this vast topic[3].

The surroundings of Earth are very much dependent on the interplay between
the solar wind1 and the geomagnetic field. This interaction creates the magne-
tosphere, a region in which the magnetic field of Earth dominate the plasma dy-
namics. The boundary of the magnetosphere is known as the magnetopause. If we
travel upstream of the magnetosphere, past the magnetopause, we will encounter
a region called the magnetosheath. The magnetosheath separates the supersonic
solar wind from the magnetosphere. The outer boundary of the magnetosheath,
beyond which the solar wind flows freely is called the bow shock. This is the shock
created when the supersonic solar wind encounters a subsonic obstacle.

1Basically ions and electrons travelling outward in the solar system at ∼500 km/s, emanating
from the sun.

14 CHAPTER 1. INTRODUCTION

Closer to Earth there is a region of cold, dense plasma, stretching to about 3-
6 Earth radii (RE).2 This region is known as the plasmasphere. The main ion
species of the plasmasphere are protons (i.e. hydrogen ions), but it also contains
small amounts of helium ions (He+, 2-20%) and oxygen ions (O+, 1-5%). The
density of the plasma ranges from 104 cm−3 at the base of the plasmasphere to
102-103 cm−3 closer to the edge of the plasmasphere.

The plasmasphere is essentially an upward extension of the ionosphere, a region in
the atmosphere where radiation (photons) and energetic particles ionise the oth-
erwise neutral atmosphere. At the outer rim of the plasmasphere there is a sharp
edge, where densities drop by a factor of 10-100 in a relatively short distance. This
edge is called the plasmapause.

The plasmasphere co-rotates with the Earth. This means that the plasma in
this region will have a drift velocity of about 0.6 km/s at Rosetta’s point of closest
approach. This is an effect that could become important when analysing the data,
depending on the velocity of Rosetta as it travels through the plasmasphere (see
Chapter 4.3). The magnetic field close to Earth can be modelled as a dipole field.

Figure 1.2: The Earth’s plasmasphere[4].

Partly overlapping the plasmasphere one can also find the radiation belts, also

2One earth radius = 6371.2 km.

1.3. THE PLASMA SURROUNDING EARTH 15

known as the van Allen Belts. These are regions where high energy (MeV) particles
are trapped, and could possibly constitute a problem for the electronics on board
Rosetta. After investigation[5], however, it was deemed safe to let the instruments
be turned on and data was collected. This was fortunate as it provides data that
can be analysed and then compared to known densities and temperatures around
Earth.

1.3.1 Rosettas trajectory near Earth

Rosetta approached Earth from nightside, entered the magnetosphere through the
geomagnetic tail, crossing the Van Allen belts. It went into the plasmasphere and
out through the magnetopause and the bow shock on the morningside of the Earth.
The closest approach was on the dayside of Earth at an altitude of about 2000 km
above the planetary surface.

Figure 1.3: The trajectory of Rosetta for the first Earth flyby. Figure from Billvik
2005[5]

At altitudes closest to Earth one would expect a plasma density of about 103 cm−3

and electron temperatures between 0.1 and 0.5 eV.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Plasma physics

2.1 Plasma - the fourth state of matter

Basically a plasma is a collection of electrons, ions and neutrals, i.e. a gas where
some of, or all, the atoms are dissociated into electrons and ions. There may still
be some disagreement amongst physicists as to whether a plasma really is a dis-
tinct state of matter or just a special type of gas, but here we will treat it as a
fourth phase in which matter can exist. It is most similar to the gas phase in that
it does not have a definite form or volume but there are still distinct differences
between the two, notably in the way particles interact (see section 2.2 below), and
it is not enough for a gas to be ionised in order for it to be a plasma (all gases
have some degree of ionisation), so let us be more precise and define[6]:

a plasma is a quasineutral gas of charged and neutral particles which exhibits col-
lective behaviour.

The words “quasineutral” and “collective behaviour” may need some clarification.

2.2 Collective behaviour

In an ordinary neutral gas, particles move undisturbed until they collide with
other particles, hence the particle motion is controlled by collisions (gravitation
is such a weak force that it is often negligible). In a plasma, however, the situa-
tion is different. Here the particles are charged, and as they move around, electric
fields and currents will be generated. Because of this, particles in a plasma will
influence each other at a distance. When saying that the particle motion exhibits
collective behaviour, this is understood to mean that the motion of the particle is

17

18 CHAPTER 2. PLASMA PHYSICS

influenced by the total fields from all particles, not by individual particles close by.

If the plasma is very tenuous, the long-range electromagnetic forces dominate over
the forces due to collisions, and we can speak of a “collisionless” plasma. This will
be important when looking at particle motion, see section 2.4.

2.3 Debye shielding and quasineutrality

A most fundamental characteristic of the behaviour of any plasma is what is known
as Debye shielding [6]. This is an innate ability of the plasma to shield out electric
potentials in it (for example a biased probe). If a body is put into the plasma
with a different potential than the plasma potential it will either attract ions or
electrons depending on its potential. This will create a sheath around the body
of particles with opposite charge to that of the body. This sheath will reduce
the potential of the body as “seen” by particles outside of the sheath (much like
electrons reduce the charge of the nucleus as seen by other charges far away from
the atom). This phenomenon is known as Debye shielding and the characteristic
thickness of the sheath is known as the Debye length. Consider the electrostatic
potential generated by a single point particle with charge q,

V (r) =
q

4πε0r
, (2.1)

where r is the distance to the particle and ε0 is the vacuum permittivity. It can
be shown [6] that the effective potential seen when in a plasma will be reduced to

V (r) =
q

4πε0r
e
− r

λD , (2.2)

where λD is the Debye length, given by

λD =

√

ε0kBTe

nee2
(2.3)

where Te is the electron temperature and n is the density of the electrons.

Now, if the dimensions of a system is much larger than λD the local potentials
will be effectively shielded out. This means that in the plasma outside of the
sheath the density of the ions and the electrons will be almost equal, the plasma
is said to be quasineutral, i.e.

ni ≈ ne. (2.4)

Equation (2.4) will be very important in our parametrisation for the analysis of
the data, see Appendix 6.

2.4. PARTICLE MOTION 19

2.4 Particle motion

The particles constituting the plasma move in random thermal motion and under
influences of electromagnetic forces. The plasma applicable to Rosetta is a very
tenuous space plasma and it can be considered collissionless, thereby simplifying
the theory considerably. Since there are so many particles interacting with each
other a statistical approach is warranted. Even though there are no collisions
a Maxwellian distribution of the particle motion is used. This distribution has
worked well in the past when considering space plasmas and is a good choice on a
probability basis. The random thermal velocity of the particles is defined as

vj =

√

kBTj

mj

(2.5)

where kB is Boltzmanns constant and Tj and mj are the temperature and mass of
the particle species respectively. In addition to the random motion of the particles,
they will generally move with a drift speed with respect to Rosetta, due to motion
of the spacecraft as well as plasma flow.

In addition to the random motion and the drift, if the plasma is magnetised,
the particles will gyrate around the magnetic field lines. If the magnetic field is
uniform and static the particle equation of motion will become

m
dv

dt
= qv × B (2.6)

where B is the magnetic field. Solving this, we see that the solution describes a
simple harmonic oscillator, with the so called cyclotron frequency, defined as

ωc ≡
|q|B
m

. (2.7)

This gyration will have a radius defined by

rL ≡ v

ωc

=
mv

|q|B , (2.8)

where rL is known as the Larmor radius and is a way to describe the circular orbit
that the particles move in, around the magnetic field lines. Now, if in addition
to the magnetic field, there was also an electric field through which the particles
move, the equation of motion would become

m
dv

dt
= q (E + v × B) , (2.9)

20 CHAPTER 2. PLASMA PHYSICS

Solving this, it is found that the electric field introduces a drift motion, called the
electric field drift, given by

vE ≡ E × B

B2
. (2.10)

In addition to the cases mentioned above, the magnetic and electric fields can be
non-uniform and time-varying. This will complicate things further and introduce
many different kind of motions. For our purposes equation (2.5) for the random
motion will be sufficient.

Chapter 3

Probe theory

In this Chapter we will introduce the Langmuir probe and its theory. In order
to simplify our future work the Orbital Motion Limited (OML) theory will be de-
scribed and we will consider under what circumstances it is applicable. Finally the
different constituent currents to the probe will be discussed.

3.1 The Langmuir Probe

The Langmuir probe was invented by Nobel laureate Irving Langmuir (1881–1957).
The device can be used to determine various properties of a plasma such as elec-
tron temperature and ion density. The probe can come in many shapes and sizes,
for example plates, spheres or cylinders and one or several probes can be used
together. The probe itself, however, is nothing more than an electrode which can
be put into the plasma and fed by a power supply. Any kind of plasma can be
investigated using the Langmuir probe but here we will focus on a probe mounted
on a spacecraft, measuring space plasmas which are typically very tenuous (as low
as a couple of particles per cm3) compared to the type of plasmas encountered in
the laboratory.

The principle behind the probe is very simple. Consider an electrode immersed
in a plasma. By using a power supply it can be given different potentials with
respect to the plasma. If the electrode potential is positive electrons will be at-
tracted to the probe and if the potential is negative it will attract ions (repelling
electrons). The s/c body constitutes the return electrode, completing the circuit.
Now consider a positive potential; electrons will be attracted to the probe and a

21

22 CHAPTER 3. PROBE THEORY

current will flow which can be measured. Under ideal conditions (section 3.2) the
current Ip will be proportional to the number density of the electrons.

Figure 3.1: One of the two Langmuir probes on Rosetta

3.2 Orbital motion limited theory

The basic principles of the Langmuir probe, as briefly described above, may be
very simple, but the theoretical description of its response is very complicated,
and in order to do any kind of work we need to use approximations to the theory.

The problem of modelling the current to a probe in a plasma is a complicated
one. However, there exist simplified expressions in the limits with regard to the
density characteristics of the plasma. We have two limits; sheath limited (SL) or
orbital motion limited (OML). In the SL case there is a very dense plasma and the
Debye length will be much smaller than the probe radius

rp � λD (SL) (3.1)

while in the OML case the plasma is very tenuous and the Debye length will be
much larger than the probe radius

rp � λD (OML) (3.2)

In Table 3.1, typical Debye lengths for the different regions which Rosetta will
move through are listed. When comparing the Debye length in these regions to
the 2.5 cm radii of the Langmuir probes on Rosetta it is clear that the OML theory
can safely be used when in the solar wind and the magnetosphere. When passing
through the plasmapasphere the Debye length comes close to the probe radius and
there may possibly be sheath effects influencing the currents in this region. The
simplifications and advantages of using the OML theory, however, are so great,
that we will use the OML theory in all these cases knowing that the results in the
plasmasphere may have an error due to the small Debye length in that region.

3.3. BIAS-, PROBE- AND SPACECRAFT POTENTIALS 23

Plasma region ne [cm−3] Te [eV] λD [m]

Solar wind 5 10 10
Magnetosphere 10 500 50
Plasmasphere 104 1 0,07

Table 3.1: The Debye length for different plasmas

The OML theory applies to a low density, collisionless plasma absent of any mag-
netic fields. Since the plasma is so tenuous here, there is only a weak screening
effect. What this means is that in the OML case the measured current will be
proportional to the density since the particle motion does not affect the potential.
Even if the plasma should at some instance not correspond to the OML-regime,
it will still provide an upper bound for the current collected[7]. The spacecraft
itself will also be surrounded by a sheath and this could potentially be a problem
for the current collection of the probes. This is one of the reasons why they are
mounted on booms, protruding a couple of meters from the spacecraft.

3.3 Bias-, probe- and spacecraft potentials

In order to make any sense of the data obtained it is crucial to know the probe
potential, Vp, with respect to the plasma. The problem is that the probe potential
will most often not be the same as the bias potential, Vb, applied to the probe. This
problem stems from the fact that the spacecraft will very seldom have a potential
equal to zero when in space. This means that when applying a bias potential, the
probe potential with respect to the plasma will become

Vp = Vb + Vsc (3.3)

where Vsc is the potential of the spacecraft (with respect to the plasma).

In order to understand what potential the spacecraft will have, one need to un-
derstand which effects contribute to charge it. There are of course many different
contributions to the charging and only a few can be discussed. The ones that are
most important, for most of the time1, are photoelectron emission and the mass
difference between the ions and the electrons.

The spacecraft, being an isolated body in a plasma, would eventually become
negatively charged because of the large difference in mass between the ions and

1There are effects which could be more important in some regions, but Rosetta will most
likely spend quite a small amount of time in these regions, thus they will not be included here

24 CHAPTER 3. PROBE THEORY

the electrons2. If the temperatures are roughly equal, the mass difference result in
a large difference in the velocity of the species (see equation (2.5)), the electrons
will move much faster than the ions and even though the plasma as a whole is
neutral, more electrons than ions will collide with the spacecraft, thus negatively
charging it.

Now, the spacecraft may also be sunlit and then then the photoelectric effect
will come into play (see Section 3.4.3). When emitted photoelectrons leave the
spacecraft it will be charged positively. What charge the s/c eventually ends ups
with depends on which effect is more dominant, and this will vary from region to
region. Table 3.2 shows what Vsc to expect in some typical environments, taking
these two effects into account.

Plasma region Sign of Vsc

Solar wind positive
Magnetosphere positive
Plasmasphere negative

Table 3.2: The spacecraft potential for different type of plasmas

Though an accurate estimate of the spacecraft potential requires a detailed model
of the spacecraft-plasma interaction, typical values are a few volts negative in the
plasmasphere, up to 10 V positive in the solar wind, and perhaps up to several
tens of eV in the more tenuous magnetospheric regions. That being said, the sign
of Vsc, given in table 3.2, is uncertain since a lot of different effects not discussed
may influence the potential. For a numerical study of the charging of the Rosetta
orbiter, refer to Roussel and Berthelier[8].

Knowing this it is clear that the spacecraft potential must be determined in order
to know the real probe potential with respect to the plasma. Fortunately, this is
possible to do from the bias sweeps. In section 6.2.2 we discuss how this problem
is solved here.

3.4 Probe currents

There are several different currents, with different origins, contributing to the
total current collected by the probes on Rosetta. To understand and interpret the
LAP measurements it is important to have a good understanding of these different

2For example:
mp

me
≈ 1836

3.4. PROBE CURRENTS 25

constituent currents and how they are connected to the voltages, i.e. an expression
for the electron and ion currents as functions of the probe voltage is needed and
this is what we will discuss in the next section.

3.4.1 Electron and ion currents

Consider the orbital motion limited regime (section 3.2). Disregarding any mag-
netic fields in the vicinity, the theory developed by Langmuir and Mott-Smith in
1926 can be used[9].

The current to a body at plasma potential due to the random movement of the
particles is

Ij0 = Apqjnj

√

kBTj

2πmj

(3.4)

where Ap is the probe area and qj, nj, Tj and mj refers to the j:th particle species
charge, density, temperature and mass respectively.

The temperature in the expression above is in Kelvin (K). It is customary in
plasma physics to give temperature in units of eV3. The conversion factor can be
determined from 1 eV = 1.6·10−19 J. With kB = 1.38·10−23 J/K we get

1 eV ⇔ 11600◦ K. (3.5)

The electrons and ions may have energies of several keV, but this high temperature
does not mean a lot of heat since the density is often very low in a plasma and the
total amount of heat transferred by collisions is not great. For convenience, in the
coming set of equations, the temperature will be given in electron volts.

Depending on whether the probe potential is positive or negative the current will
respond differently. A positive probe potential will give a linear response for the
amount of collected electrons (more being collected the stronger the potential) and
a negative one will give a exponential decay for the electrons.

Ie =

Ie0

(

1 + Vp

Te

)

, Vp > 0

Ie0e
Vp

Te , Vp < 0

(3.6)

where Te is the electron temperature (in eV). An expression of the same form, but
with a sign change (since ions have opposite sign to the electrons) will hold for the

3Eav = KbT

26 CHAPTER 3. PROBE THEORY

ions

Ii =

−Ii0e
−

Vp

Ti , Vp > 0

−Ii0

(

1 − Vp

Ti

)

, Vp < 0

(3.7)

where Ti is the ion temperature. By convention, currents are counted positive
when flowing from the probe to the plasma.

3.4.2 Ion Current for supersonic flow

The expression for the ion currents above is not quite applicable in all cases since
the ions will pass the s/c with a supersonic velocity. In the solar wind the drift
velocity is much higher than the s/c speed and the ions will move much faster than
Rosetta, while in the magnetosphere of the Earth, Rosetta will move much faster
than the ions. Either way, except for certain places in the magnetosphere where
the ions are subsonic, the random thermal motion of the ions will be negligible
compared to their average velocity with respect to Rosetta. Magnetic field effects
on the ions will also be negligible (see Section 4.3.3) and we can approximate the
ion current as the ram flux of the ions hitting Rosetta, i.e. the flux of ions hitting
the probe due to the motion of the spacecraft. The ion current for supersonic flow
will then become[7]

Ii,ram = −nieπr2
p

(

1 +
2eVp

miv2
sc

)

vsc (3.8)

where rp is the probe radius, mi the ion mass and vsc is the spacecraft velocity
w.r.t. the plasma.

3.4.3 Photoelectron current

Whenever the probe is exposed to sunlight the photoelectric effect must be taken
into consideration. A photon hitting the probe will give all its energy to an electron.
Depending on whether this energy is great enough the electron may be emitted
from the spacecraft. These photoelectrons will have a varying energy but most will
lie in the region of a couple of eV. If the probe potential is below the energy of the
emitted electron, the electron will be able to leave the probe and counteract the
current collected. Thus an expression for this photoelectron current is also needed.

In a tenuous plasma the photoelectron current will be the dominant contribu-
tion to the probe current. The photoelectron current depends on the sunlit area

3.4. PROBE CURRENTS 27

of the probe, the irradiance from the sun and the surface properties, thus making
it a complicated effect to take into account. Here we adopt the following form of
the current, suitable for our needs[10]

Iph =

−Iph,0

(

1 + Vp

Tph

)

e
−

Vp

Tph , Vp > 0

−Iph,0, Vp < 0

(3.9)

where solar irradiation and surface properties of the probe determines the con-
stants Iph,0 and Tph.

Photoelectrons emitted from the probe is not the only problem. The radiation
from the sun will also emit photoelectrons from the spacecraft body, booms and
solar panel. These electrons will contribute to a denser cloud of particles around
the spacecraft and the probes will measure a higher current. If we assume that
the cloud is fairly homogenous it would be reasonable to assume that the probes
collect the photoelectrons much like they collected the electrons from the plasma
(eq. (3.6)), the only difference being that now it is the bias potential (i.e. poten-
tial of the probe with respect to the s/c), not the probe potential in the expressions.

Isc =

Is0(1 + Vb

Ts
), Vb > 0

Is0e
Vb
Ts , Vb < 0

(3.10)

Refer to section 5.3 for a more detailed discussion of the mathematical model used
for the photoelectron current in this work.

3.4.4 Putting it all together

The current that is measured will now be a sum of four parts, the electron current,
the ion current, the emitted photoelectron current and the photoelectron current
from the s/c to the probe (eqs. (3.6), (3.7)/(3.8), (3.9) and (3.10))

I = Ie + Ii + Iph + Isc (3.11)

All these must be taken into account when analysing the data from the probe.
It is important to understand that these expressions are only simplified models
of the real current. There exist more complete models, but they are also more
complicated and hence less useful.

28 CHAPTER 3. PROBE THEORY

Chapter 4

Using the probes in space

Here the different ways in which one can use the Langmuir probes on Rosetta are
presented. We discuss the bias sweep in more detail and introduce the concept of
the CV curve. The last section deals with some of the complications encountered
when travelling through space and we determine whether these effects are large or
if they can be neglected.

4.1 Modes of operation

There are several modes in which the probes can be used. Using only a single
probe, three different modes can be utilised [IRF-U website1] (the parameters that
each method can provide are also given)

• Bias sweeps: ne, Te, Vi, Vsc

• Continuous current measurement: ∂n
n

, n√
Te

• Continuous voltage measurement: Vsc

Refer to section 4.2 for a thorough breakdown of the bias sweep.

Doing a continuous current measurement means letting the probe have a fixed
bias potential and measuring the collected current. In this way the current will
vary proportional to the density of the plasma, but also depend on the plasma
temperature and the spacecraft potential.

1http://www.space.irfu.se/rosetta/science.html

29

30 CHAPTER 4. USING THE PROBES IN SPACE

By continuous voltage measurement the probe is set at a fix bias current and by
measuring its potential w.r.t. the s/c body a value of the spacecraft potential Vsc

can be obtained.

Rosetta is equipped with two probes, adding to the possible information that
can be gathered. By letting both probes have the same bias potential local fluc-
tuations in density and temperature can be measured. The electric field between
these two probes can be measured as well as the flow velocity of the plasma along
the probe separation line (a kind of time-of-flight measurement).

4.2 Bias sweeps - the CV curve

A single probe can do a sweep from negative to positive bias potential thereby
obtaining the current to the probe as a function of the potential. This kind of
sweep will thus provide a so called current-voltage (CV) curve which can be used
to obtain various parameters such as density and temperature. The CV-curve for
a spherical probe can look something like figure 4.1. Positive current is defined as
electrons reaching the probe (i.e. electrons travelling toward the probe).

−30 −20 −10 0 10 20 30
−200

0

200

400

600

800

1000

1200
Time: 2005−03−04 22:45:21, P1

V
b
 [Volts]

I [
nA

]

Figure 4.1: An actual probe sweep from Rosetta for a sunlit probe in the plasma-
sphere.

If we have a large negative bias, below −Vsc (see eq. 3.3), ions will be attracted to
the probe while electrons are repelled. This region, on the negative x-axis in Figure
4.1 is called the ion collection region. If we increase the potential we will at some

4.3. COMPLICATIONS 31

point have a situation where the current from the electrons is as big as the current
from the ions (and thus the total current will cancel). This is called the floating
potential. Increasing the bias potential even further will result in more electrons
than ions reaching the probe. Thus the electron current will start to dominate,
this is called the electron collection region and this is where the curve is linear on
the positive potential side in Figure 4.1. There is quite a large difference in the
absolute currents generated in the ion and electron collection regions respectively.
This is because electrons have a much smaller mass than the ions and hence will
move much faster.

4.3 Complications

The theory of section 3.4, being a great simplification, cannot perfectly model the
plasma in which Rosetta is moving. There are many effects that will influence the
measurements. This section is devoted to some of these. The ones considered here
are:

• v × B effects

• Wake effects

• Magnetic effects

4.3.1 v × B effects

When Rosetta travels through space it will encounter magnetic fields, particularly
when close to a planet such as Earth or Mars. General effects of magnetic fields
are discussed briefly in section 4.3.3. There will, however, also be secondary effects
of these B-fields. A charge moving through a magnetic field B with velocity v will
experience an induced electric field E according to the formula

E = v × B (4.1)

In free space, not close to any planets it is the speed of the solar wind that is
important (since the solar wind has a speed around 400-500 km/s while Rosetta is
moving much slower). Let’s assume the velocity of the solar wind is perpendicular
to the magnetic field (which may or may not be the case depending on how far out
from the sun Rosetta is, however, taking the extreme case gives an upper bound
on the effect), having a velocity of 400 km/s. The interplanetary magnetic field

32 CHAPTER 4. USING THE PROBES IN SPACE

(IMF) at 1 AU has a strength of about 10 nT.2 The induced electric field will thus
be

400 · 103 · 109 = 0.004 V/m

Since the probes are located on booms about 1 m in length3 the induced potential
will be

0.004 V/m · 1 m = 0.004 V = 4 mV

This is such a small effect that it can be ignored. When travelling inside the
magnetopause, however, the surroundings change. It is now the Earth’s magnetic
field and Rosettas own speed which must be taken into account. If we treat the
geomagnetic field as a perfect dipole it will have a form of

BE(L) = B0L
−3 (4.2)

where B0 is the equatorial field at 1 Earth radii. The closest to Earth that Rosetta
comes is at 1960 km above the planetary surface (Section 1.3.1). At this altitude
Rosetta will “feel” the strongest magnetic field. At closest approach Rosetta moved
with a velocity relative to Earth of about 10 km/s [ESA website4]. Assuming that
the plasma co-rotates with Earth it will have a velocity of about

2π · (6371.2 + 1960)

24 · 3600
km/s = 0.60586 km/s

small enough to be neglected (this should be added to Rosettas velocity relative
to the Earth, but it will not make any difference in the end). Calculating a
geomagnetic field of

31 · 10−6 · (1960

6378, 16
+ 1)−3 = 1.3875 · 10−5 T

the induced potential over a 1 m boom will become

1.3875 · 10−5 · 10 · 103 = 0.13946 V

This is more of a contribution than in interplanetary space but it is still small.

4.3.2 Wake effects

As Rosetta moves through space, a wake will be created behind the s/c, somewhat
like that behind a boat on the sea. The random motion of the ions need quite some

21 astronomical unit = the mean Sun-Earth distance = 1.49597870 · 1011 m
3the actual length of the booms are 2010 mm and 1395 mm, respectively
4http://www.esa.int

4.3. COMPLICATIONS 33

distance to fill the void created behind Rosetta, since their thermal velocity is much
smaller than their drift velocity. The electrons, however, with their considerable
thermal motion, will fill the void swiftly. This means that the wake is actually
mostly an absence of ions. This is not entirely true if the Debye length would be
in the order of the spacecraft size. Here we assume that there are almost no ions
in the wake. This will mean that the plasma behind the s/c will be more tenuous
with respect to ions than the actual plasma and now the probe will measure a
lower current behind the s/c on the ion side. This effect can be seen in early data.
When the probe is in the wake behind Rosetta almost no ions can be seen and
therefore it is important to know Rosettas direction in space and the attitude of
the probes when measuring.

4.3.3 Magnetic effects

The equations (3.6) and (3.7)/(3.8), for the electron and ion currents are only
derived for unmagnetised plasmas. Rosetta will travel through plasmas which are
magnetised. If the Larmor radius of the particles is large compared to the probe
diameter there will be no problem, since on the scale of the probe the magnetic
field will have a negligible influence on the movement of the particles. The Larmor
radius, defined in Section 2.4, is given by

rL =
mv

| q | B
=

√
2mEkin

| q | B
(4.3)

It is seen that the Larmor radius is dependent on the mass as well as the velocity
of the particles. This means that for a given energy, the electrons, having a
smaller mass, will have a smaller Larmor radius than the ions. By calculating the
electron Larmor radius and comparing it to the probe radius we can see whether
the magnetic field’s influence is negligible or not. Using values found inside the
plasmasphere close to Earth5 (this is where the magnetic field is strongest) it
is seen that the Larmor radius is 10 cm, larger than the probes 2.5 cm radius.
We therefore expect that the errors introduced by use of the unmagnetised probe
theory will be small.

5me = 10−30 kg, q = 10−19 C, B = 10 µT, v = 10 km/s

34 CHAPTER 4. USING THE PROBES IN SPACE

Chapter 5

Investigating the photocurrent

In which we perform an investigation of the photoelectron current emitted from
the probes when in sunlight. Four different models describing the photoelectron
current are compared and one model together with parameter values is chosen for
our continued work. Finally we discuss some of the properties of the probes when
in shadow and wake, based upon data from the so called LAP dance that Rosetta
went through.

5.1 Introduction

The photoelectric current is important in sunlit plasmas. Since the theoretical
current is a superposition of several different currents (see section 3.4), it is im-
portant to have a good model for the photoelectrons, in order to extract real
physical parameters such as density and temperature. In Figure 5.1 below data
from the Ion Composition Analyzer onboard Rosetta are presented[11]. These
data were gathered during the earth flyby on 1 March 2005 and the figure show
energy (on the y-axis) and density (by colour) of the observed ions as time pro-
gresses. Throughout the data a dark red “band” of ions with an energy of 1 keV
can be seen. These are solar wind ions. There are several short intervals of low
density (green or even white colour) in the data. For example a green interval can
be seen at around 03:00 and a large white interval after 12:00. The low density
at those times should mean that the current measured by the LAP is dominated
by photoelectrons. Furthermore, at times the probes are located behind Rosetta,
in the wake of the spacecraft, but still in sunlight. As was explained earlier (see
section 4.3.2) the ion side of the sweep will be mostly photoelectrons under these
circumstances and such sweeps will also provide valuable data for characterising
the photoelectron current from the probes. It should be noted that the density

35

36 CHAPTER 5. INVESTIGATING THE PHOTOCURRENT

Figure 5.1: Data from the ICA-instrument onboard Rosetta (see Table 1.1)[11].
On the y-axis the energy of the gathered ions is given while colour designates
density. The solar wind ions having an energy of 1 keV traverses the entire data.
Notice the bands of low density in the 1 keV region at the approximate times
03:00, 08:00, 10:00, 12:00.

is quite low in the solar wind and photoemission will dominate at all times, but
these intervals minimises other effects even further. By looking at data from these
intervals, a qualitative model for the photoelectron current can be established.

The model used will be determined using data taken on 2005-03-01 at 11:55 to
12:30.

5.2 Slope of the sweeps

Figure 5.2, shows two sweeps in 1 March 2005, around 12:00. This is just before
the first Earth flyby and Rosetta is in the geomagnetic tail of the Earth moving
toward the planet. The plasma in the geomagnetic tail is very tenuous and there
should be little contribution from plasma electrons.

5.2. SLOPE OF THE SWEEPS 37

−40 −30 −20 −10 0 10 20
−70

−60

−50

−40

−30

−20

−10

0

10
Time: 2005−03−01 11:57:51, Probe: P2

V
b
 [Volts]

I [
nA

]

−40 −30 −20 −10 0 10 20
−70

−60

−50

−40

−30

−20

−10

0

10
Time: 2005−03−01 11:45:03, Probe: P2

V
b
 [Volts]

I [
nA

]

Figure 5.2: Two sweeps from probe 2 when Rosetta moves towards Earth, through
the geomagnetic tail

Here probe 2 was in the s/c wake, but still sunlit providing a good opportunity to
study the photoelectric current from the probe. Most of the current contribution
come from photoelectrons emitted from the probes but there is still a small slope
on both the ion and electron side. The reason for the slope on the ion side can
not be due to ions from the plasma, since it is not dense enough to create such a
slope, at least not with reasonable temperatures for the ions. Looking at Figure
5.2 we can calculate a slope of about

g =
dI

dV
=

3 nA

15 V
= 2 · 10−10 =

1

5 GΩ

From equation (3.8), Ii0 for the solar wind with a high density of ions can be
calculated (the solar wind is actually denser than the geomagnetic tail in which
we are, giving an upper bound on the current)

Isw
i0 = nieπr2

pvsc = 30 · 106 · 1.6 · 10−16 · π · 0.0252 · 400 · 103 A = 3.8 nA

Now an approximation of dI
dV

can be obtained by taking into account that mv2

2
=

1 keV for solar wind ions. We get

dI

dV
=

3.8 nA

1 keV
= 3.8 · 10−12 =

1

0.2632 TΩ

Comparing this to the value 1
5 GΩ

we got from the plot, it is clear that the slope
on the ion side cannot be due to plasma ions.

38 CHAPTER 5. INVESTIGATING THE PHOTOCURRENT

To perform the same calculation on the electrons we need to know what electron
current to expect from the solar wind. Using eq. (3.4) we obtain

Isw
e0 = Apqene

√

kBTe

2πme

= 4π ·0.0252 ·1.6 ·10−19 ·5 ·106 ·
√

5 · 1.6 · 10−19

2π · 9.1 · 10−31
= 2.35 nA

This would give a slope of

g =
dI

dV
=

2.35 nA

5V
≈ 0.5 · 10−9 =

1

2 GΩ

This value is in the same order as what we calculated from Figure 5.2 and plasma
electrons cannot be ruled out as a source for the ion side slope. One explana-
tion for this behaviour may be that the spacecraft potential actually is quite a bit
higher (or lower if negative) than what is detected by the probes. The reason is
the 1

r decay of the Coloumb potential coupled with the fact that the booms on
which the probes are located have a finite length, ending within the influence of
the spacecraft body. What this means is that the plasma in which the probes are
measuring is influenced by the spacecraft and its Coloumb potential. This will lead
to a determination of the spacecraft potential being smaller than what it really is.
This would mean that the part of the sweep refered to as the “ion side” may in
fact still be the electron side since the spacecraft potential is higher (perhaps as
much as twice the value determined).

However, electrons coming from the plasma is not the only possibility. The slope
could also be due to photoelectrons coming from the spacecraft. Either way, had
the current been only photoelectrons emitted from the probe we would not have a
slope above zero, and because of the contribution of other currents (be it plasma
electrons or spacecraft photoelectrons) on the electron side of the sweep that part
of the data is less suited for our analysis.

Yet a third explanation is that this current could be due to a leakage current
from the probe to the spacecraft. Normally the probe is supposed to be isolated
so that no current can pass to the spacecraft (through the booms), but there is of
course the possibility of for example contamination on the surface of the insulators
separating conductive areas at different potential. Such contamination can give
some conductivity, resulting in a small leak-current.

For the remainder of this report, the last explanation (i.e. the leak-current), has
been assumed. This current was subtracted, simply by fitting the slope on the
ion side. This way the slope on the ion side disappears, but on the electron side
a small slope still remains, this is still unaccounted for but it is quite possible an
effect of plasma- or spacecraft photoelectrons as discussed above.

5.3. MODELS 39

5.3 Models

There exist several theories modelling the photoelectron current and here four
models will be analysed and compared. The first one is also the simplest and has
already been mentioned (equation (3.9)), for convenience it will be written here
again

Iph =

−Iph,0e
−

Vp

Tph , Vp > 0

−Iph,0, Vp < 0 .

(5.1)

This is a very simple model with just an exponential decay in the current as the
potential is increased (a high potential means that the photoelectrons will not have
the energy to escape the probe, but will be pulled back in). This describes Boltz-
mann distributed emission from a plane surface. The second model considered is
discussed by Grard[12], and introduces a second linear term in the positive probe
potential, describing emission from a sphere instead of a plane. This will make the
transition region between positive and negative potentials smooth, which may be
more physical (though it may not follow the data any closer).

Iph =

−Iph,0

(

1 + Vp

Tph

)

e
−

Vp

Tph , Vp > 0

−Iph,0, Vp < 0 .

(5.2)

The third model considered regards the photoelectron current as a superposition
of two Boltzmann distributions with different temperatures[13]. The current can
in that case be expressed as

Iph =

−I1
ph,0e

−
Vp

Tph,1 − I2
ph,0e

−
Vp

Tph,2 , Vp > 0

−I1
ph,0 − Iph,0, Vp < 0 .

(5.3)

where the constants I1ph,0, I2ph,0, Tph,1 and Tph,2 refers to the two different currents.
Finally model 2 and model 3 are put together and we get model 4

Iph =

−I1
ph,0

(

1 + Vp

Tph,1

)

e
−

Vp

Tph,1 − I2
ph,0

(

1 + Vp

Tph,2

)

e
−

Vp

Tph,2 , Vp > 0

−I1
ph,0 − Iph,0, Vp < 0 .

(5.4)

5.4 Performing the investigation

The data is collected over a period of 30-40 minutes and there will therefore be
fluctuations in the parameters values. The parameters derived in this investiga-
tion (Iph,0 and Tph) should not vary with the potential, but they do depend on

40 CHAPTER 5. INVESTIGATING THE PHOTOCURRENT

external influences, notably the UV irradiation from the sun. Since Rosetta was
at approximately the same distance from the sun during the interval of the data
collection, these parameters should be more or less constant. The irradiation from
the sun is not completly static even on this time scale and this will influence our
result, but probably quite marginally. A possible error-source is how “clean” the
data analysed are with regards to the surrounding plasma. We want the sweep to
be as photo-dominated as possible. By only using intervals in the data that we
know are dominated by photo-current these kind of effects should be minimised.

5.4.1 Comparing the models

The method used to compare the different models uses a semi-automatic approach.
The software written fits the models to the data, given certain initial values, but
the initial values can be chosen freely. The spacecraft potential can also be set
manually.

There are mainly two problems with the fitting. First, the spacecraft potential
is needed in order to use the models described in eqs. (5.3) and (5.4). The prob-
lems inherent with obtaining Vsc is described in 6.2.2, here it is enough to note
that it will present a problem for the software at times. One solution is to set the
potential manually (by eye) where the software fails.

The second problem is that the fitting routine used is the prebuilt MATLAB
function lsqcurvefit. What it does is basically that it minimises the least-square
error. By taking the norm of the residual we have a way of describing the error,
and also a way of comparing the different models above. This is a non-linear fitting
technique, suitable for non-linear models. The problem arises when considering the
different parameters that can be used for the fitting. By trying different parame-
ters, several local minima can be found. The fit will look nice, but the parameters
need not be a good reflection of the actual state of the plasma. Here, values for the
parameters can be set (either as initial guesses or as the final physical parameters)
manually.

When comparing the different models it was soon realized that models 1 and
2 (i.e. the ones with only one population of electrons) were inferior to the other
two. For high tolerances in the fit routine they worked well, but when reducing
the tolerance, model 3 and 4 gave better results. This can actually be understood
quite easily from the formulas themselves. It is always possible to get at least as
good a fit with model 3 as with model 1, since model 1 is a special case of model 3.
By discarding these models only model 3 and model 4 remain. To compare them

5.4. PERFORMING THE INVESTIGATION 41

two approaches were used:

• Automatic, with Vsc as free parameter but selected manually if its value
seemed bad

• Manual, parameters chosen so that the fit looks good and the values are
reasonable

The error (calculated as the root mean square difference of the fit to the actual
data value, over the whole data interval) was calculated for each fit and compared
between the models. As can be seen from figure 5.3 both models work well.

11.55 11.6 11.65 11.7 11.75 11.8 11.85 11.9 11.95 12 12.05
3.5

4

4.5

5

5.5

6

6.5

7

7.5
Error, Start time: 2005−03−01 11:36:31

Time [hours]

E
rr

or
 [n

A
]

Model 3
Model 4

11.6 11.7 11.8 11.9 12 12.1 12.2 12.3
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
Error, Start time: 2005−03−01 11:36:31

Time [hours]

E
rr

or
 [n

A
]

Model 3
Model 4

Figure 5.3: The total least-squares error divided by the number of data points
for probe 1, models 3 and 4, left using the manual method and right using the
automatic one. This is done for seven probe bias sweeps.

When looking at more dense plasmas the photoelectron current will be small in
comparison to the ion and electron current. Furthermore, as it can change quite
drastically over time it was decided that we should determine a fit that was good,
and consider the values obtained for the temperature and the ratio between the
currents in eqs. (5.1) - (5.4) as fixed. By doing this, the absolut value of the
current can still be varied when fitting data later on, but we have a fix on the
individual parameters that should be quite good1. This method will of course
introduce an error but it should only influence the total fit marginally while at the
same time reduce the number of independent variables for the fitting algorithms
to work with by three.

When using fixed physical parameters (see Figure 5.4), the errors, once again,

1The absolute value should scale as 1

r
2 with the distance from the sun

42 CHAPTER 5. INVESTIGATING THE PHOTOCURRENT

were not appreciably different. The fixed parameters used (See table 5.1) worked
quite well when changing between data sets. Notice in Figure 5.4 how the error
goes up as time progresses, indicating that we are leaving the photo-dominated
region and other currents start to become important.

11.7 11.8 11.9 12 12.1 12.2 12.3 12.4 12.5
6

8

10

12

14

16

18

20

22

24

Time

E
rr

or
 [n

A
]

Error for model 3 and model 4 with fixed parameters

Model 3
Model 4

Figure 5.4: The total least square error divided by the number of data points for
models 3 and 4 when using fixed parameters, probe 1. Seven probe bias sweeps
are used.

Model I1
Ph,0 [nA] I2

Ph,0 [nA] TPh,1 [eV] TPh,2 [eV] Mean error [nA]

Model 3 56 4.5 2.6 12 11.6
Model 4 55 6 1.2 7.1 12.2

Table 5.1: The fixed physical parameters used when comparing model 3 and
4,probe 1. These are the values used in Figure 5.4

Both models worked well, but due to the fact that the parameter values determined
for model 4 are closer to those found in the literature[13], the decision fell upon
model 4 (eq. 5.4). Henceforth, it will be used with the values given in table 5.1.
Figure 5.5 shows a fit of a sweep in a photo-current dominated plasma using both
models and the values in Table 5.1.

5.5. THE LAP DANCE 43

−35 −30 −25 −20 −15 −10 −5 0 5
−70

−60

−50

−40

−30

−20

−10

0
Fits using model 3 and model 4, 2005−03−01 11:36:31

Bias potential [V]

C
ur

re
nt

 [n
A

]

Current with leak−current subtracted
Fit using model 3
Fit using model 4

Figure 5.5: A fit of a sweep from when the probe was in sunlight, using model 4
and model 3, probe 1. Notice the smooth character of model 4 at the bend. The
values used are given in Table 5.1.

It is interesting to note that the simpler models 1 and 2 were discarded early on.
The photoelectron energy distribution thus appears to be more complex than a
single Boltzmann distribution.

5.5 The LAP dance

The LAP dance, performed on October 10, 2004, is a time interval during which
the Rosetta probes were alternatingly moving in and out of sunlight. This “dance”
of the s/c through different probe illumination conditions provides an interval over
which the probes response to total shadow as well as total sunlight can be measured
and analysed. The LAP dance was performed when Rosetta was in the solar wind,
i.e. in a very tenuous plasma (see table 6.1) and once again the measured current on
the ion side of the sweep should basically be photoelectrons leaving the probe. This
also means that when the probes are in shadow, no current should be measured.
Figure 5.6 is a plot of the photo-electron current leaving the probes (actually it
is a plot of the saturated ion side current, which in this case should be mainly
photoelectrons). Iph0 was determined by first subtracting the leak-current (see

Section 5.2) from the data and then fitting the ion saturated side linearly. The
first 40% of the ion side was used for this fitting. This lines crossing of the y-axis
should, to a good approximation, be Iph0, and is what is used in Figure 5.6.

44 CHAPTER 5. INVESTIGATING THE PHOTOCURRENT

5 6 7 8 9 10 11 12 13 14
−10

0

10

20

30

40

50

60

70

80

90

100
The LAP−dance 2004−10−10

Time [hours]

I ph
0 [n

A
]

Probe 1
Probe 2

Figure 5.6: The current to the probes calculated from a linear fit of the ion side
of the sweep. The three peaks in P2 data are not real.

Some qualitative conclusions can be drawn immediately. It is clear that the probes
differ in their total photo-emission, probe 1 emitting about 85 nA while probe 2
only emits 60-70 nA. This difference could be due to some contamination on probe
2, perhaps from thruster exhaust. Another effect, not investigated here, is the fact
that the probes will be illuminated differently. Depending on the orientation of
the sun probe 2 may have had a greater part of its surface blocked by the shadow
of its boom. Another possible explanation is that the probe surfaces may have
slightly different photoemission properties.

Another interesting feature can be seen when either probe moves into darkness
(between 6:50 and 8:30 for probe 1 and between 10:20 and 12:10 for probe 2).
Instead of giving a zero value both still register a current. For probe 1 this current
is slightly negative, meaning that the probe actually collects electrons (note that
the sign convention in these plots is such that photoemission is counted positive),
while probe 2 has a larger positive current, which could stem from some residual
photoemission, possibly because of reflected light from the solar panels or some
other surface on the spacecraft. It cannot be a collection of ions, since during
the LAP dance, being in shadow from the spacecraft is equivalent to being in the
wake of the spacecraft, as the solar wind propagates radially out from the sun.

5.5. THE LAP DANCE 45

The wake should be quite free of ions as explained earlier (see section 4.3.2).

In order to find out whether this remnant current was due to calibration of the
instrument or some physical event a closer look at this current was performed.
The linear fit of the ion side, defined as discussed above, was evaluated to give the
currents at Vb = 0 and Vp = 0 respectively.

6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8
0

1

2

3

4

5

6

7

Time

m
 [n

A
]

Current to probe 1 when in eclipse, linearised to Vb = 0

10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12 12.2 12.4

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

Time

m
 [n

A
]

Current to probe 2 when in eclipse, linearised to Vb = 0

6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8
0

1

2

3

4

5

6

7

Time

m
 [n

A
]

Current to probe 1 when in eclipse, linearised to Vp = 0

10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12 12.2 12.4

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

Time

m
 [n

A
]

Current to probe 2 when in eclipse, linearised to Vp = 0

Data
Mean value = 3.3565 nA

Data
Mean value = −4.4083 nA

Data
Mean value = 1.5676 nA

Data
Mean value = −5.3061 nA

Figure 5.7: The crossing of the linear fit with the y-axis as a function of time.

The top two plots in Figure 5.7 show the evaluation for probe 1 (red) and probe
2 (blue) at Vp = 0 and the lower two are the evaluation at Vb = 0. The fact
that the lower plots show less variation than the upper plots suggests that the
discrepancy has a physical origin. If the current originated from a calibration
error one would expect it to be better organised by the bias potential Vb, than by
the actual probe-to-plasma potential Vp. Since this is not the case the conclusion is
that the problem is a physical one, in the sense that the observed currents are due
to particles carried to the probes, not due to any imperfections in the instrument
electronics. The fact that the value of the current has opposite sign for the probes
(1.5 nA for probe 1 and -5.3 nA for probe 2) further complicates the picture.
This seem to point at different physical processes working in the two cases. For
probe 2 one explanation could be reflection of UV light from the solar panels, thus
exposing it to radiation which would mean a small photoemission even though it is
supposed to be in shadow. To further explore this option the attitude of Rosetta

46 CHAPTER 5. INVESTIGATING THE PHOTOCURRENT

was needed at the data points. Using routines built by Magnus Billvik[5] and
applying them (somewhat modified) to the code created for analysing the data
sweeps this information could be extracted. The result can be seen in Figure 5.5.

5 6 7 8 9 10 11 12 13 14

0

10

20

30

40

50

60

70

80

90

100

Time [h]

Iph
0 [n

A]
 / P

IU
−te

mp
er

atu
re

 [d
eg

 C
]

Attitude, I
sat

 and PIU−temp. for P1

5 6 7 8 9 10 11 12 13 14
−30

−20

−10

0

10

20

30

40

50

60

El
ev

ati
on

 an
gle

 of
 th

e s
un

, φ
 [d

eg
]

5 6 7 8 9 10 11 12 13 14

0

10

20

30

40

50

60

70

80

90

100

Time [h]

Iph
0 [n

A]
 / P

IU
−te

mp
er

atu
re

 [d
eg

 C
]

Attitude, I
sat

 and PIU−temp. for P2

5 6 7 8 9 10 11 12 13 14
−30

−20

−10

0

10

20

30

40

50

60

El
ev

ati
on

 an
gle

 of
 th

e s
un

, φ
 [d

eg
]

Iph
0

PIU−temp

Iph
0

PIU−temp

Figure 5.8: The attitude of Rosetta, ion saturation current of the probes and
temperature of the PIU during the LAP-dance. The attitude is given as the
elevation angle from the xy-plane of Rosetta of the radius vector pointing to the
sun. The current closely follows the attitude change, notice the sudden rise in
photo-emission when Rosetta starts to turn. The temperature of the PIU (teal
line) does not follow the fast changes in the attitude.

Here the elevation angle from the xy-plane of Rosetta of the radius vector pointing
to the sun is given as a function of time. There is no need to include a second
angle (i.e. the azimuth) for the attitude because Rosetta is always pointing its
solar panels at right angles to the sun in order to maximise the power output (see
Figure 5.5). In addition to the attitude the temperature of the Plasma Interface
Unit [14] (PIU) is also given. The PIU temperature sensor is mounted in the same
elctronics box as the LAP electronics, and can be assumed to be a reasonable proxy
for the LAP temperature. The reason to include the temperature in the plot is to
look for any effects of varying instrument offsets due to varying temperature in the
instrument box. Even though there is a small change in the temperature, possibly
due to attitude changes, but more probably becuase of variation in internal heat
generation, it is not on the same time scale as the fast changes in photo-emission
and attitude and can thus be ruled out as a source for the observed variation of
photoemission current. The sudden rise in the photo-emission around 6:30-6:40 for
both probes can now be linked to a simultaneous change in attitude. What gives

5.6. CONCLUSION 47

rise to this change in photo-emission is not clear. It could be sunlight reflection
from the surface of the s/c, since the light will come in at an angle to the spacecraft,
or perhaps some inhomogeneity on the probe surface, but this is just speculation
and unfortunately this is where we need to stop. It is beyond the scope of this
report to investigate these details further.

5 6 7 8 9 10 11 12 13 14
−0.2041

−0.204

−0.2039

−0.2038

−0.2037

−0.2036

−0.2035

A
zi

m
ut

ha
l a

ng
le

 [m
ill

i d
eg

re
es

]

Time [hours]

The azimuthal angle of the sun, 2004−10−10

Figure 5.9: The azimuthal angle from the xz-plane to the vector pointing towards
the sun during the LAP-dance. It is very close to zero and changes very little
throughout the time interval, thus exposing as large an area of the solar panels to
sunlight as possible.

5.6 Conclusion

Analysing the photoemission from the probe 2 it was found that the model that
fit the data best was of the form

Iph =

−I1
ph,0

(

1 + Vp

Tph,1

)

e
−

Vp

Tph,1 − I2
ph,0

(

1 + Vp

Tph,2

)

e
−

Vp

Tph,2 , Vp > 0

−I1
ph,0 − Iph,0, Vp < 0

Parameters to the model were also determined and fixed to be as in Table 5.2.

Parameter Value

I1
Ph,0 55 nA

I2
Ph,0 6 nA

TPh,1 1.2 eV
TPh,2 7.1 eV

Table 5.2: The physical parameters used for model 4

48 CHAPTER 5. INVESTIGATING THE PHOTOCURRENT

This model is what we are going to use in our further work, fixing the parame-
ters but leaving the absolute value of the photoemission variable, by applying a
dimensionless factor. The same form of the photoemission current, with the same
values for Tph,1, Tph,2 and

Iph,1

Iph,2
is assumed to hold also for probe 1.

We found a small (a couple of nA) unexplained current. This provided the basis
for a hypothesis of a leak current from the probe to the spacecraft. This current,
albeit small, may influence the analysis when in very tenuous, sunlit plasmas,
where there should be small contribution from the ion current. In these cases
it can be a good idea to subtract the slope of the ion side throughout the data.
When in denser plasmas this effect is utterly negligible (where ion currents of µA
are common) and can be disregarded. Another possibility is the influence of the
spacecraft body on the plasma being measured by the probes, effectively lowering
the spacecraft potential measured.

The analysis of the LAP dance led to some information regarding the charac-
terstics of the probes, presented below

• Absolute photoemission: A difference in the emission of photoelectrons
between the probes were found. Probe 1 has a photoemission of about 85 nA
and probe 2 a photoemission of about 72 nA. These values were determined
at 1.09 A.U. for conditions on 2004-10-10. The origin of the difference in
photoemission magnitude is not known.

• Remnant current: Both probes registered a remnant current when in wake
and shadow. The remnant current to probe 1 was positive (between 1.5
and 3.5 nA) and the remnant current to probe 2 was negative (between -4
and -5.5 nA). The origin of this current, while not concluded, seem to be
physical and does not appear to have any connection to the temperature
of the LAP electronics. The difference in sign point to different physical
processes working in the two cases. One possibility for probe two could be
reflection of UV light from the solar panels or s/c body.

Further, more detailed, work need to be carried out to understand the details of
the above mentioned peculiarities. These effects found are however quite small
and will not present too much of a problem for the continued work in this thesis
and will thus be neglected henceforth.

Chapter 6

Automatic fit routine

Here the routines which are used for the automatic fitting of the data are presented
and the parameterisation is explained. The algorithm used for fitting the data au-
tomatically is walked through step-by-step and some of the more non-transparent
function files will be explained a little more in depth for anyone faced with task of
working with these routines.

The first thing to note is that the automatic fitting routine is embedded into
the graphical users interface “Grafical” and as such is not very convenient to alter.
The basic functions, however, once given the proper indata, do not need the GUI
and can thus be explained separately. In fact, the entire automatic fitting process
is independent of the GUI in this aspect and in this chapter we will discuss it a
bit more in-depth. Before we do that, however, the parameterisation of the mod-
els need some discussion. In what follows, functions, vectors (i.e. row or column
matrices, not physical vector quantities) and matrices will be given in bold text.

6.1 Parameterisation

In order to determine a good fit for the data we need to determine the character-
istics of the plasma in terms of its physical parameters. The problem is that it is
very inconvenient to use the real physical parameters directly in the fit. Instead,
a parameterisation based on the mathematical form of the model is implemented
(e.g. straight line, exponential etc.). This approach makes it easier to determine
some parameters directly from for example a simple linear fitting. These can then
be used as initial guesses in a non-linear fitting for the parameters. The total
current is given by

49

50 CHAPTER 6. AUTOMATIC FIT ROUTINE

I =

−Ie,0

“

1 +
Vp

Te

”

− Ii,0e
−

Vp
Ti − Iph,01

“

1 +
Vp

Tph,1

”

e
−

Vp
Tph,1 − Iph,02

“

1 +
Vp

Tph,2

”

e
−

Vp
Tph,2 , Vp > 0

−Ie,0e
Vp
Te − Ii, 0

“

1 −
Vp

Ti

”

− Iph,01 − Iph,02, Vp < 0

(6.1)
This lends itself to a simple parameterisation of the form

I =

ae
b
a

Vp + c (1 + dVp) + f

„

Iph,01

“

1 + V p

Tph,1

”

e
−

V p
Tph,1 + Iph,02

“

1 + V p

Tph,2

”

e
−

V p
Tph,2

«

, Vp > 0

a + bVp + cedVp + f
`

Iph,01 + Iph,02

´

, Vp < 0

(6.2)
where we have chosen to keep the photoelectron parameters as they are, only vary-
ing the total photoelectron current by the use of the parameter f.

The values of the parameters Iph,01, Iph,02, Tph,1 and Tph,2 will be kept fixed, us-
ing the values determined in Chapter 5. The conversion between mathematical
parameters and physical parameters are defined as

a = −Ii,0 (6.3)

b =
Ii,0

Ti

(6.4)

c = Ie,0 (6.5)

d =
1

Te

(6.6)

g =
1

Tph01
(6.7)

h =
1

Tph02
(6.8)

Now b can be determined directly from the slope on the ion side. The reason why
we did not parameterise d in the same way is because of the fact that the slope
on the electron side is much less trustworthy in that it may contain several other
current contributions (such as photoelectrons from the spacecraft which we have
not included in the above parameterisation) besides plasma electrons.

6.2 Algorithm

In order to understand and interpret the fits one need to know how exactly, these
are made. This section will look at all the algorithms used when fitting the data,
step-by-step.

6.2. ALGORITHM 51

6.2.1 Data handling

The data from the Rosetta LAP instrument can be obtained through the client-
server system ISDAT. Originally developed for the Cluster satellites, ISDAT reads
the data from the various missions (such as Freja, Cluster, Viking, Rosetta etc.)
and presents it in a uniform format. There are several different clients with which
one can obtain the data from ISDAT. Here we use the ISDAT interface developed
for Matlab, the function isgetDataLite[15].

The data obtained through ISDAT cannot be used directly by the fitting rou-
tines, but must first be adjusted somewhat. There are mainly three things that
need to be taken care of:

• Sorting: ISDAT presents the data in chronological order. As the sweeps
can be made in any of the directions down, up, up-down or down-up, the
data need to be sorted in ascending order, from low bias potentials to high.
This was done to facilitate the coding and it is a convenient and transparent
way to have the data stored.

• Mean of same potential values: For every bias potential, four measure-
ments of the current will be gathered. This is because of when the bias is
changed it will take some time for the current to respond. For the sweeps
we here used, there is little sign of any transient, so by performing several
measurements and then taking a mean value one can be quite certain that
the right current is obtained.

• Cutting saturated values: The LAP indstrument has two gain ranges,
±10 µA or ±200 µA. All measuremnets treated in this report were made
with the ±10 µA range, so all currents above this value will ne saturated.
This will of course interfere with the fitting procedure so all data above that
threshold must be cut in order for the fitting to function properly.

For this reason a function named adjust data.m was created. Given the bias
potential, current and time it performs the above mentioned adjustments to the
data, returning the three inputs ready to be used by the fitting routines.

6.2.2 The spacecraft potential

As was mentioned in Section 3.3, obtaining the spacecraft potential, Vsc, is crucial
in order to perform the fitting of the data. It is important that a good initial
value of Vsc is determined before the non-linear fitting techniques are used, since

52 CHAPTER 6. AUTOMATIC FIT ROUTINE

all the models are dependent on this potential. If an acceptable value has been
determined it can be refined using lsqcurvefit, see Section 6.3.4.

A function, named find scpot.m, has been developed in order to get a first de-
termination of the spacecraft potential. It looks for the maximum in the second
derivative of the data. In theory this method should work fine. The problem,
however, is that often the data may be somewhat noisy. Taking the derivative
numerically, unfortunately has the effect that it blows up noise, and since we are
forced to take two derivatives the effect is doubled. Because of this fact, and
the fact that all data points are looked through in an attempt to get hold of the
maximum in the second derivative, the routine may find local maxima that are
actually larger than the global maximum of the real Vsc. This will cause problems
for the entire fitting. This effect is most important in very tenuous plasmas for
a probe in eclipse, where the bend close to the spacecraft potential is weak. A
couple of procedures are used to remedy this problem, the most important one
being the filtering of the data using a Savitzky-Golay filter before differentiation.
Another important procedure is the first non-linear fitting of the spacecraft po-
tential performed in fit data2.m, see Section 6.3.4 for more details on how this
fit is performed. In the function preliminaries.m some more steps are taken to
try and determine the spacecraft potential before the actual non-linear fitting is
performed, see Section 6.3.3.

6.2. ALGORITHM 53

6.2.3 Walkthrough

Get Vsc

Get z

Vsc close to z?

Yes

No Set
Vsc = -z

Set f = -1

k > 25e-9 ? No

Yes

Look at e-side of sweep
Approximate as straight line
Determine k and m
Set Te = 0.5 eV

Set Vsc = Vsc - Te + m/k

c = m
d = 1/Te

Look at ion side of sweep
Approximate as straight line
Determine k and m
Set a = m, b = m/k

Photo-current? No

Yes

a = a - Iphoto

s/c-photo current?

No

Yes

Set h = 0.833, d = 1
g = k_g/h, c = k_c/d

Set k_g = min(0.5k 5e-9)
then k_c = k - k_g
d = 1/1, h = 1/1.2
c = k_c/d, g = k_g/h

Set g = 0
and h = 0

Set bounds:
if max(I) < 300e-9 let vary
Vsc - 7 <= Vsc <= Vsc + 7
else let vary
Vsc - 1 <= Vsc <= Vsc + 1
If handles.partial == 1
only use data <= 8 V
else use all data

Set optimisation:
opt.tolX = 1e-25
opt.tolFun = 1e-15
opt.MaxFunEvals = 5000
opt.MaxIter = 5000

Fit Vsc better:
100 weight, -5V < Vsc < +5V
free params: a, Vsc

Fit Te better:
Use only data around Vsc
free params: c, d, f

Vsc > 0 ?
YesFit electron side better:

100 weight over Vsc
free parameters: c, d

No

Fit ion side better:
100 weight first 70 %
free parameters: a,b, c,d,Vsc

Fit all better:
free parameters: all params

Last determination of Te,
weight around Vsc, free: c,d

Compare least square error
Return best fit (least error)

Figure 6.1: A flow chart of the algorithms used in the automatic fitting routine

The first function called is gothrough.m in which the coordinates and velocity
of Rosetta is determined. This is done by using (somewhat altered) routines de-
veloped by Magnus Billvik[5]. The program also sets the coordinate system and
units (these are chosen by the user, see Section A.1.3) correctly and saves all in a
structure called PARAMETERS.

Now the function fitting2.m is called (from gothrough.m) and this is where
the actual fitting starts (see Section 6.3.2 for more details on this).

• The photoemission current, temperature and functional form, is hardcoded in
the function, using the values obtained when investigating the photocurrent
exclusively, see chapter 5. Only the absolute magnitude of the photoemission
current is fitted.

• The initial values of the other parameters are determined by calling a function

54 CHAPTER 6. AUTOMATIC FIT ROUTINE

created specifically for this purpose; preliminaries.m, see Section 6.3.3.
The parameters determined in preliminaries.m are:

– The zero-crossing voltage of the current, z.

– The parameter used to change the magnitude of the photocurrent, f, is
at this stage hardcoded to -1.

– A preliminary value of Vsc.

– The parameters c and d determined from the electron side of the sweep
(being mathematical parameters for the plasma electrons). The slope
of the electron side, k is also given.

– The ion side parameters, a and b are obtained.

• Depending on whether the user has chosen to set the spacecraft potential
manually Vsc is set to this manual value or else to the value determined in
preliminaries.m.

• Depending on whether it should be a photocurrent or not (the user can have
chosen not to have it or, alternatively, the automatic fitting may have chosen
a combination that excludes photocurrents) f is either set to zero or the value
determined in preliminaries.m. a is corrected accordingly.

• If there are two electron populations, c and d are altered and g and h are
introduced, otherwise g and h are set to zero.

• Now, depending on whether the user has chosen to do one automatic fit using
the model he/she has chosen or if he/she has chosen to try all different fits,
this is done. Below, the procedure that the algorithm utilises when trying all
models is described. Figure 6.2 is a schematic representation of the ordering
of the models. The function performing the fit is called fit data2.m and it
is explained in-depth in Section 6.3.4.

6.2. ALGORITHM 55

 MODEL A
Ram ions
Plasma electrons

 MODEL B
Ram ions
Plasma electrons
Photo electrons

 MODEL C
Thermal ions
Plasma electrons

 MODEL E
Ram ions
Plasma electrons
S/C -photo electrons

 MODEL D
Thermal ions
Plasma electrons
Photo electrons

 MODEL F
Ram ions
Plasma electrons
S/C-photo electrons
Photo electrons

 MODEL G
Thermal ions
Plasma electrons
S/C-photo electrons

 MODEL H
Thermal ions
Plasma electrons
S/C-photo electrons
Photo electrons

Figure 6.2: A schematic representation of the model order taken by the routine

– The first model that is fit, model A, is the one containing ram ions

and plasma electrons.

– The second one, model B, is ram ions, plasma- and probe photo-

electrons.

– The values determined for the parameters from models A and B are
now used as initial values for models C-F.

– Model C, thermal ions and plasma electrons is fitted, using values
from model A.

– Model D, thermal ions, plasma electrons and probe photoelec-

trons, using values from model B.

– Model E, ram ions, plasma electrons and sc-photoelectrons, using
values from model A.

– Model F, ram ions, plasma-, sc- and probe photoelectrons, using
values from model B.

– The values determined for the parameters from models C-F are now
used for models G and H.

– Model G, thermal ions, plasma electrons and sc-photoelectrons,
is fitted using values from both model C and model E.

56 CHAPTER 6. AUTOMATIC FIT ROUTINE

– Model H, thermal ions, plasma-, sc-photo electrons and probe

photoelectrons, is fitted using values from both model D and model
F.

• All these different fits, models A-H, are now compared using a function called
choose fit.m. The comparison is performed in one of two ways depending
on what the input into the function is. If the function has an input with
errors calculated for the models already, so called resnorms that are obtained
from the MATLAB built-in function lsqcurvefit, obtained when fitting the
models, choose fit.m merely picks out the one with the least error and
brands this fit as the best one. The resnorms are actually a sum of the
square of the function value in every data-point minus the actual data value
in that point. If there are no resnorms output from the function, the least
square value is calculated by another function and the fit with the smallest
least square is taken as the best fit. It is now returned and saved.

6.3. FUNCTIONS 57

6.3 Functions

All in all, there are 18 functions written for the purpose of analysing the data
automatically. The most important ones are described below.

Table 6.1: The routines developed for the automatic analysis of the sweep data

Filename Description

extraction.m the main program, governing the other functions
fitting2.m governs the fitting process
preliminaries.m extracts some preliminary (initial) values for the param-

eters
zero cross.m determines where the current crosses the y-axis (i.e.

crosses zero)
moving average.m smoothes the data
find scpot.m determines a first spacecraft potential from the second

derivative of the data
d2.m using numerical formulas for the derivative, returns the

second and third derivative of the data
fit single e.m computes initial guesses of parameters coupled to the

electrons
determine ecl determines if the probe is in eclipse or not
fit data2.m the function performing the fitting, using lsqcurvefit.
model.m is called with parameters to calculate the current for the

given value of the parameters
compute c.m is used to calculate the parameter c from the floating

potential
weighting.m weights the data around a user specified point by a user

specified amount
choose fit.m given a set of different fits, chooses which one that fits

the data best
errorest.m calculates a least square error for the fit to the data
compare fits.m does essentially the same thing as choose fit, but more

specific for the extraction routine
par2phys2.m converts the mathematic parameters used in the fit to

physical parameters
getIparts.m returns the different constituent currents of the fit

58 CHAPTER 6. AUTOMATIC FIT ROUTINE

6.3.1 extraction.m

Form: [ppar,fit,currents,epop,fits,pars,parameters] =
extraction(Vb,I,handles,phi,probe)

Input: Vb and I are the bias potential and the current of the sweep re-
spectively. The bias potential need to be adjusted

handles is a structure containing information regarding spacecraft
speed and what kind of currents should be used in the fitting. In
grafical (see Appendix A) handles contain lots of information spe-
cific for the GUI that is not needed for the analysis, but the infor-
mation that must be contained for the fit is:
handles.vsc spacecraft speed in m/s, for example 10000.
handles.e plasma use plasma electrons? 1 = yes, 0 = no
handles.e photo use photo electrons emitted from the probe?
handles.e sc use photo electrons coming from the s/c?
handles.i ram use ram or thermal ions?

1 = ram, 0 = thermal
handles.fit partial Fit entire data set or just lower part?

1 = partial, 0 = all

phi is the elevation angle of the sun in radians.

probe designates what probe the data comes from, 1 or 2.

Output: ppar is the physical parameters of the plasma given as a vector:
[Vsc f z Iph01 Iph02 Tph1 Tph2 ni Ti mi ne Te ne2], where f is a factor
for the photocurrent (though already multiplied in Iph01 Iph02, z is
the zero-crossing of the current and mi is the effective mass of the
ions. Unfortunately this version of the program does not support
effective mass, and as such mi is a placeholder variable.

fit is a matrix containing the potential and current values of the
fit.

currents is a cell matrix containing the constituent currents of the
fit in order Iph Ii Ie Ie2

epop specifies if one or two electron populations were assumed in
the fitting process, 1 or 2.

fits and pars are the fits and mathematical parameters of all the
different models respectively. These are only used when the try

all fits option is selected. All models are returned so that the user
can go through their results, regardless of the choice of best model
by the algorithm. In this case parameters is the mathematical
parameters of the best fit.

6.3. FUNCTIONS 59

6.3.2 fitting2.m

Form: [parameter,fit] = fitting2(Vb,I,handles,phi,probe)

Input: The inputs are exactly the same as for extraction.m. See Section
6.3.1.

Output: parameters is the mathematical parameters obtained in the fit-
ting. They are given as a row vector in the form: [Iph01 Iph02 Tph1

Tph2 a b c d g h Vsc f z err] where err is the error of the fit in
amperes.

fit is a matrix containing the potential and current values of the
fit.

In fitting2.m the fitting procedure is governed. First it calls preliminaries.m

(see Section 6.3.3) to get initial values for the parameters. These initial values are
manipulated somewhat depending on the selections performed by the user. If the
user has chosen to set the spacecraft potential manually, it will be used as initial
value. Furthermore, depending on whether photoelectrons are used or not, f will
be set to the value obtained from preliminaries.m or to zero. As a result, a is
corrected to

a = a − f · Iph (6.9)

where Iph is the total magnitude of the photocurrent, since a is, in a sense, the
absolute value of the ion-current, and the ion side of the sweep should be a super-
position of the ion-current and the photocurrent.

If the user has selected two electron populations, the initial value for both will
be set as follows. The initial guess of the temperature for the spacecraft photo-
electrons will be 1.2 eV (this is equal to the value obtained for the photoelectrons
escaping the probe, see Section 5.6) and for the plasma electrons to 0.5 eV. Now
the slope on the electron side will determine the value for Ie01 and Ie02 through the
formulas

Ie01 = −k1 · Te1 (6.10)

Ie02 = k2 · Te2 (6.11)

where k1 and k2 are determined from k, the slope of the electron side, returned
from preliminaries.m. k2 is set as the minimum of 0.5·k and 5·10−9 and then k1

will be the remaining slope, i.e.

k1 = k − k2 (6.12)

60 CHAPTER 6. AUTOMATIC FIT ROUTINE

What this means is basically that the second electron population, as a starting
guess, can maximally be half of the electrons collected by the probe (the fitting
procedure will then surely change this). Of course, in the program, we do not
work with the physical parameters, but rather with the mathematical ones, and
accordingly the algorithm will set:

h =
1

1.2
(6.13)

d =
1

1
= 1 (6.14)

c = k1

1

h
(6.15)

g = k2

1

d
(6.16)

When the preliminaries have been performed, fitting2.m continues with the fit-
ting. If the user has selected the try all option, the program will try all different
combinations of fits on the data. The order in which the different combinations are
tested is important. The output from some fits are used as the input for others,
eg. the output from the fit using one electron population is used as the input for
the fit using two electron populations. See section 6.2 for more on the order of the
fits. The different combinations are now compared and the best one is chosen as
the fit to use and its parameters are returned by the function.

6.3. FUNCTIONS 61

6.3.3 preliminaries.m

Form: [dat out] = preliminaries(Vb,I)

Input: Only the bias potential, Vb, and the current, I, is needed for the
input.

Output: dat out is a row vector containing the initial values of some of the
mathematical parameters: [a b c d Vsc f z k] where k is the slope
of the electron side of the sweep.

preliminaries.m is a function that calculates the initial values of some of the
parameters that are needed. It uses several functions to do this, but they will not
be explained in depth. The workings of these functions will be explained here.

The first thing preliminaries.m does is to determine the zero crossing in the
current, z. This is done through the function zero cross.m. The algorithm is
taken from Reine Gill[16] and simply put looks for the first value in the current
above zero and the last value in the current below zero. Then it draws a line
between these and finds the zero crossing on this line. If the data is noisy, the
first current value above zero does not need to be a real physical value above, but
rather due to a noisy data set, some points may randomly rise above zero. Becuase
of this a procedure in which the point with the greatest possibility of being the
first one above zero in current and the point with the greatest possibility of being
the last one below zero in current are determined. The line between these two are
then taken and the zero-crossing determined on this line.

The parameter that affects the photocurrent magnitude, f is hardcoded to -1.

Next a starting value on the spacecraft potential is found by the use of the second
derivative. Refer to Section 6.2.2 for more details regarding the determination of
the spacecraft potential. Depending on the value of Vsc and z, Vsc may be set to
-z. This is becuase the spacecraft potential cannot be too far to the right of the
zero crossing, i.e. not at too high Vb values as compared to z.

Next a determination of the initial values to c and d is performed with the help
of a function named fit single e. The name refers to the fact that this only de-
termines parameters when there is a single electron population. The algorithm is
a simple one, looking at the last 70% of the data above Vp = 0, to which a linear

62 CHAPTER 6. AUTOMATIC FIT ROUTINE

fit to the data is performed:
y = kx + m

and by using MATLAB’s function polyfit k and m are easily obtained. The
initial value of the temperature, Te0 is set to 0.5 eV. It was found too hard to set
a consistent initial value of the temperature based on the data given. The reason
being that the data-points were too sparse. The temperature can be obtained by
looking at the data just below the bend (close to the spacecraft potential). The
problem is that there is only a small interval in which to look, perhaps in the
order of 0.2 V. With the data-point spacing being 0.125 V only one or two points
may be good and this is far too small a data to draw any good conclusions from.
Depending on whether the slope of the line approximated is greater than 25·10−9

or not the determined spacecraft potential is adjusted accordingly

Vsc = Vsc − Te0 +
m

k
(6.17)

Now, Ie0 = m, and Te0 is returned. The program sets

c = Ie0

and

d =
1

Te0
.

Next a simple determination of the ion side is performed in the same way (from a
linear fit of the low part of the line this time), and initial values of a and b can
be obtained.

All these values; a, b, c, d, k and Vsc are then returned in a vector to fitting2.m.

6.3. FUNCTIONS 63

6.3.4 fit data2.m

The function responsible for the actual fitting is fit data2.m. Here we will go
through this function, step by step, in order to try and clarify how it works.

Form [par out,fits out] = fit data2(Vb,I,par,handles)

Input: Vb and I are the bias potential and current of the sweep respec-
tively.

par is a vector containing initial guesses for the mathematical pa-
rameters that are used to fit the data, see section 6.1 for their exact
definition. They must be given in the form [Iph01 Iph02 Tph1 Tph2

a b c d g h Vsc f z]. By using preliminaries.m initial guesses of
a,b,c,d,Vsc,f and z can be obtained.

handles is the same structure that need to be given when calling
extraction.m. Refer to section 6.3.1 for how it works.

Output: par out is a vector containing the fitted mathematical parameters,
it is in the same form as par, except for the fact that there is a
extra 14th parameter, the error of the fit included.

fits out is a matrix containing the potential and current values of
the fit.

The first thing done is setting bounds on the parameter values that the program
alters in order to fit the models to the data. These bounds are common sense
ones, for example f can never be greater than zero or because of positive density
a must always remain negative. One thing worth mentioning is that Vsc takes
on two different bounds depending on the data. If the maximum current is less
than 300·10−9 A, i.e. a tenuous plasma, the first determination of the spacecraft
potential may be quite wrong, so Vsc is allowed to change between +7 and -7 V of
its original value, while if the current is greater than 300·10−9 A it is only allowed
to vary by 1 V either way.

Depending on what the user has selected, either the entire data (if handles.fit partial
= 0) or just the part of the data below 8 V (if handles.fit partial = 1) will be anal-
ysed.

Next the optimisation is set. With opt.TolX and opt.TolFun one can set what
tolerance should be used, the smaller the value chosen, the better the fit. Unfor-

64 CHAPTER 6. AUTOMATIC FIT ROUTINE

tunately, lowering the tolerance will lead to a slower fitting process. The variables
opt.MaxFunEvals and opt.MaxIter sets the number of function evaluations the
program should perform.

After these preliminaries the actual fitting starts. fit data2.m uses a built-in
function called lsqcurvefit. lsqcurvefit uses a non-linear fitting technique, which
require the initial guesses as well as the bounds on the values to be quite good
(since there exist several local minimums in the function and it can find one of
these). It is important to understand how lsqcurvefit works in order to under-
stand the workings of the fitting procedure.

The vector ph par and params in are given to lsqcurvefit which, in its turn,
will pass these vectors on to the model used, model.m in this case (see section
6.3.5 for more about how model.m works). The way lsqcurvefit works, is that
you first give a function, through which lsqcurvefit will try different values of
the parameters given in params in (the first try is those values given and then
lsqcurvefit will change the values to fit better). In each step it compares the fit
obtained (model.m returns a current vector) to the real data, which is given as
the fourth input in lsqcurvefit. lowbound, highbound and opt are the lower
and upper bounds for the parameters and the optimization ranges structure set
earlier. Everything that comes after opt in the calling of lsqcurvefit will without
discrimination be passed on to the function given in the first input. In our case
this mean that ph par, ref, vargin and handles will be passed on to the function
model.m. Refer to Section 6.3.5 for a breakdown of params in, vargin and ref.

Before lsqcurvefit.m is called, however, the program determines what kind of
model the user wants to try and fit. Depending on the model, different parame-
ters will be varied and held fixed. The ones being varied are given in the vector
params in and the ones kept fixed in vargin.

The fit is now performed several times, holding different parameters fixed and
weighting different intervals in each fit. The weighting is performed using the
function weighting.m. To weight the data around a point one need to give the
data (V and I), the point to weight, how large symmetrical interval around this
point one wants (in volts) and finally how much weight (10 means to create 10
copies of each point in the interval, 100 to create 100 copies etc.).

Depending on the data, 5 or 6 different steps are performed.

• First the program tries to determine the spacecraft potential better. This is
done by weighting the data around the initial guess of Vsc (±5 V) by a factor

6.3. FUNCTIONS 65

of 100, and then varying the parameters a, f (if photocurrent is selected),
and Vsc.

• The second step tries to find a better value for the electron temperature, Te.
This is done by only looking at the data points very close to Vsc (using the
three datapoints lying below -Vsc+1 V), letting c and d change.

• The third step is dependant on the sign of Vsc obtained. If it is positive the
program tries to fit the electron side better, focusing on the parameters c and
d (and possibly g and h though most often not) and weighting the electron
side. The reason for only doing this when having a positive spacecraft poten-
tial is because of the fact that when two electron populations are present the
spacecraft potential is almost always negative. Trying to fit the electron side
better in this case and get sensible results for the two populations is almost
impossible. The reason is that there are in principle two linear functions on
the electron side and the program will have no idea how to separate them,
so the values they are given will be random (the total fit, however, should
be quite good). When Vsc is negative the program will immediately go to
the fourth fitting stage.

• The fourth stage is focused on the ion side of the sweep, trying to get a good
fit on the lower part of the data. Here a, b, d, Vsc, f (if applicable) and z

are all free, but b, z and Vsc will probably not change much as they should
be quite good already, and are therefore held constant.

• Now the parameters of the best fit is taken as values going in to a fifth fit,
where all parameters except b are varied. The data is weighted around Vsc

quite heavily since this is an important region.

• Finally all the different fits are compared and the best one is chosen. This
comparison is performed by the function choose fit.m. The best fit will go
through a final procedure to try and determine Te better, since this is a very
important variable (it will also influence the density). This means that c

and d are allowed to change once again.

The last thing done is determining an error in the least square sense and then
returning all parameters with errors from the function.

66 CHAPTER 6. AUTOMATIC FIT ROUTINE

6.3.5 model.m

Form: I = model(params,Vb,ph par,ref,vargin,handles)

Input: params are the mathematical parameters that can be varied by
the function lsqcurvefit.m (see Section 6.3.4), given in a vector.
Which parameters to place and how to place them in the vector
depends on the choice of the variable ref. For example, if ref =
1, then the parameters in param should be [a Vsc z] and vargin

should be [b d]. In this way param and vargin are closely tied.
Refer to the help-text of model.m for the different choices of fixed
and free parameters. The reason for this somewhat complicated
way of using different references, is to be able to use the function
with different parameters varied, in this way it is specially tailored
for lsqcurvefit. On the other hand, when just using it to get a
value on the current (for example when using feval.m, it does not
matter which reference one chooses, as long as params and vargin

are correctly set.

ph par is always the photoelectron parameters and should be given
as [Iph01 Iph02 Tph1 Tph2].

handles is the exact same structure as in extraction.m and
fit data2.m, see section 6.3.1.

Vb is the bias potential, and the current will be calculated over this
interval.

Output: I, the current calculated for the parameters given.

By calling model.m with a certain set of parameters, it will return a current
calculated over the entire interval given by Vb. model.m uses the floating poten-
tial, to determine the parameter c from the other parameters. Next, depending
on what currents the user has chosen to use in the fit, the current is calculated for
the parameters and then returned in a vector.

Chapter 7

Results and discussion

Where we use our developed analysis tool on the first Earth flyby to evaluate the
performance of the routines.

7.1 The first flyby of Earth

In the evening 4 March 2005 Rosetta blew past Earth at around 10 km/s. Before
that, it had already spent several days in a plasma influenced by the presence
of Earth. During a short period of time, Rosetta encountered a wide variety of
different plasmas with a density ranging from a few, to several thousand particles
per cubic centimetre. Thus, the Earth flyby provided the perfect opportunity to
test the analysis routines and compare the results obtained with other instruments
onboard Rosetta.

The Langmuir probes were supposed to collect data in intervals of a couple of
minutes throughout the entire flyby, but unfortunately, because of an error in
communications, there is a wide gap in the data collected, starting in the evening
of the first of March and ending mid-day of the third of March. Despite this,
there is plenty of data available, especially in the evening of the fourth of March,
when Rosetta was closest to Earth, and exposed to a dense plasma-spheric plasma.

Using the models determined in Chapter 5 for the photoelectron current, Graf-
ical, the application developed (see Appendix 6 and A) for this very reason, where
put to the test.

The program was set to automatically fit the data for the period 1 March 2005 to
6 March 2005. The results follow.

67

68 CHAPTER 7. RESULTS AND DISCUSSION

7.2 Vsc and the plasma density

7.2.1 Spacecraft potential dependence on density

According to Pedersen{pedersen the plasma density should exhibit an exponential
dependence on the spacecraft potential. This is easy to see from eq. 3.4, which
shows that the density is proportional to the current. The equation for the equi-
librium state of the probe, disregarding smaller current contributions such as ions
etc. will be

Ie0

(

1 +
Vsc

Te

)

= Iph0e
− Vsc

Tph (7.1)

thus, the relation between the density and the spacecraft potential will be of the
form

ln(ne) = A − B ln

(

1 +
V sc

Te

)

− Vsc

Tph

. (7.2)

We can see that the dependence is not strictly linear, but to a good approxima-
tion the linear part of the function will dominate the logarithmic part (i.e. the Vsc

Tph

term will dominate the ln
(

1 + V sc
Te

)

term) and we can treat the relationship as

linear. This means that to find a linear relationship between the logarithm of the
density and the spacecraft potential would be a good sanity check for our routines.

It would also be good to perform the same analysis with independent data, thus
comparing our data to theory as well as independent sources.

7.2.2 Comparison to ACE

To compare results we turned to data provided by the Advanced Composition Ex-
plorer, ACE[17]. ACE is a spacecraft maintained and developed by the National
Aeronautics and Space Administration (NASA) which orbits about the L1 libration
point, approximately 1.5 million km from Earth. It measures several parameters
of the solar wind and its data can thus be used to compare with our results.

Because of the difference in position between Rosetta and ACE, Rosetta would
measure the same plasma as ACE a couple of hours later. A time-shift was cal-
culated for each data point and added to the data. In order to simplify the cal-
culations any components of the solar wind velocity not in the GSE x-axis were
omitted, since these amounted to at most 1/10 of the velocity component in the
x-direction and could thus be considered negligible.

7.2. VSC AND THE PLASMA DENSITY 69

During Rosettas travel through the magnetosphere probe 2 was often in wake.
Thus, to compare ACE-data and data from Rosetta measurements from probe 1
was needed. From about 22 o’clock at the fourth of March to about 23 o’clock at
the fifth of March, probe 1 was not in sweep mode, but rather in its continuous
voltage measurement mode (see section 4.1). The spacecraft potential that probe
1 measured in this mode could, with a better time resolution than if the probe
had been in sweep mode, be plotted against the density given from ACE at the
same time, see Figure 7.1. The linear relationship discussed in Section 7.2.1 can
be seen, though it is quite diffuse.

2.5 3 3.5 4 4.5 5
100

101

102

V
sc

 probe 1 cont. [V]

D
en

si
ty

 A
C

E
−d

at
a

[c
m

−3
]

The density vs. the spacecraft potential ACE/P1

Data points
linear fit

Figure 7.1: The plasma density obtained from ACE versus the spacecraft potential
from probe 1.

By performing a linear fit we get a bid on our polynomial in equation (7.2).

log(n) = −0.1327 · Vsc + 16.6969 (7.3)

This result mean that for a given spacecraft potential, the density can be calcu-
lated from this simple equation.

70 CHAPTER 7. RESULTS AND DISCUSSION

After the completion of this work, an improved method by Haaland et. al [18]
to calculate the time shift, has come to the authors knowledge. That method,
which takes account of solar wind magnetic field density front directions, could
possibly give a smaller spread to plots like Figure 7.1. The difference in time shift
could amount to as much as a couple of hours.

Now the polynomial determined from the ACE-data is used with the potential
obtained from the continuous voltage measurement performed by probe 1 during
most of 5 March 2005. By using equation (7.2) the density can be determined.
Figure 7.2 show a time series of the plasma density obtained from ACE, as well as
the density from Rosetta.

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
0

5

10

15

20

25

30

35

40

45

50
The density

Time [days]

D
en

si
ty

 [c
m

−3
]

ACE−data
Solar Wind P1

Figure 7.2: The density of the plasma over time from ACE (red) and from probe
1 (blue)

The overall correspondence is quite good, but there are of course differences in
detail. This is to be expected because ACE is not in the exact same environment
as Rosetta. Looking closely at Figure 7.2 it would seem like a shift of 2 hours
in time would make the density from ACE and the density from the polynomial
correspond better which could mean that the time shift is incorrectly calculated,
as discussed above.

7.2. VSC AND THE PLASMA DENSITY 71

7.2.3 Comparison Vsc to n from LAP

Performing the same linear fit as in Section 7.2.2 but with density and s/c potential
from LAP we get another bid on our polynomial in equation (7.2)

log(n) = −0.51405 · Vsc + 19.202105 (7.4)

These two equations may be good in different density regions. The equation from
Rosetta, eq. (7.4) may be a good approximation at high densities while the one
from ACE, eq. (7.3), may be a better fit at lower densities. This behaviour is also
visible in Figure 7.3 below.

−10 −5 0 5 10 15 20
10−2

10−1

100

101

102

103

104

V
sc

 [V]

D
en

si
ty

 [c
m

−3
]

The density vs. the spacecraft potential P1

Magnetosphere
Solar Wind
Magnetosheath
Linear fit
Linear fit from ACE−density vs. probe1 cont.

Figure 7.3: The logarithm of the density plotted against the spacecraft potential
for probe 1. The different colours designate the different regions where the data
points have been collected. Notice the linear relationship between the density and
the potential. The black line is a linear fit to the data from Rosetta while the
purple line is a linear fit the data taken from ACE.

Though it is clear that the density in Figure 7.3 exhibits the logarithmic relation-
ship, it is remarkable that this relationship holds for negative spacecraft potentials

72 CHAPTER 7. RESULTS AND DISCUSSION

as well. For negative spacecraft potentials the equilibrium equation 7.1 should
not hold (see equations 3.6 and 3.9). That the line is so linear despite this could
however be explained by considering that the solar panels are not outer part of
the equipotential surfaces. So even though the spacecraft potential is negative, the
solar panels (emitting most of the photoelectrons) are still be positive, making the
photocurrent exhibit the same exponential behaviour which led to equation 7.2.
Looking again at Figure 7.2 one can see that the data points start to bend to the
right at high potentials which could indicate a second electron population.

7.3 The spacecraft potentials

Ideally the probes should measure the same spacecraft potential at the same time.
Since the probes measure at different times (usually within a minute of each other
or so) a simple function was written which finds the measurements of the probes
that are closest in time to each other. If, for a given measurement of probe 1, no
measurement of probe 2 within 4 minutes can be found, the data-point is thrown
away. This way a set of data points could be determined and plotted against each
other. Figure 7.4 is a plot of Vsc for probe 1 and probe 2.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

20
The s/c potential estimates plotted against each other

V
sc

 probe1 [V]

V
sc

 p
ro

be
2

[V
]

Magnetosphere
Solar Wind
Line x = y

Figure 7.4: The spacecraft potentials plotted against each other. The linear rela-
tionship is seen to hold well. Notice the shift of 1-2 V between probe 1 and probe
2.

The differently coloured points come from different regions; the red points are

7.3. THE SPACECRAFT POTENTIALS 73

measured in the magnetosphere while the blue ones are taken in the solar wind.
The linear relationship holds really well but there is a shift in potential between
the probes. Probe 1 measures about 1.4 V lower than probe 2 throughout. This
can be explained by the fact that for most of this period probe 2 actually is in
wake behind Rosetta. As was explained earlier (section 4.3.2), there are almost no
ions in the wake while electrons may enter on the order of − kBTe

e
. This means that

the wake should be charged negatively to a potential approximately −Te since not
many electrons have an energy greater than Te so that charging stops at this level.
This would hold if the Debye length is smaller than the wake. According to Table
6.1 of section 3.2 the Debye length in the solar wind is about 10 m, larger than
the wake. To help us out we look at Poisson’s equation. Regarding the shape of
the wake as a cylinder with radius a, it will become

∇2φ = − ρ

ε0
= e

ne − ni

ε0
=

en0

ε0
, r < a (7.5)

Solving this for a cylindrical geometry we get

φ =

0, r > a

−kBTe

e
a2−r2

λ2

d

, r < a
(7.6)

Using a Debye length of about 7 m and electrons with energy 10 eV we get a shift
of about 1 V, just as we can see from Figure 7.4.

74 CHAPTER 7. RESULTS AND DISCUSSION

7.4 Comparing the data - MIP

The Mutual Impedance Probe, MIP, on Rosetta is a good instrument for measuring
plasma density in dense plasmas and thus useful for comparison. Unfortunately,
when this thesis was written only the density for one point was available for com-
parison, but it can nevertheless show if the values determined by the routines are
probable. Because of the uncertainty in the Te-value we derive from the sweeps
the density determined through MIP could be better than the density determined
through LAP in the densest plasmas in the deep plasmasphere, and it is interest-
ing to see what temperature we get by using the MIP estimate of the density and
working backwards. This has been done. Table 7.1 show the density from MIP
and LAP as well as the temperature from LAP at 22:15 on 4 March 2005.

n [cm−3] Te from routines [eV] Te using n from MIP [eV]

MIP 2964 N/A N/A
LAP P1 3250 0.3105 0.3734
LAP P2 1853 0.2885 0.1127

Table 7.1: The density from MIP and LAP, as well as the temperature from LAP.

As can be seen the density determined from probe 2 is quite bad, but this was
expected since probe 2 is in wake at the time. The value of the density determined
from probe 1 is quite good, if on the high side. The temperature determined from
LAP by the routines have not changed much from the initial value of 0.3 eV and
can thus not be trusted (this is not surprising, as the voltage step of 0.25 V used
in the sweeps is not sufficient for determining temperatures below around 0.5 V -
there are simply too few data points on the exponential part of the sweep). The
Te values determined using the MIP density should be good and has a reasonable
value. Nevertheless, the Te value derived from LAP alone is within 25% of the
combined MIP-LAP values and LAP and MIP agrees on density to within 10%.

7.5. CONCLUSION 75

7.5 Conclusion

The results obtained through the analysis routines seem to be consistent with
other sources both on Rosetta (MIP) and on independent spacecrafts (ACE). In
addition, the results show a consistency with theory, as can be seen from the linear
relationship of the logarithm of the density vs. the spacecraft potential. There are
unfortunately limitations as well. The determination of the electron temperature
is too dependent on initial values given and as a result the temperature cannot be
trusted. Accordingly, there will be an uncertainty in the absolute value given for
the electron density, though the overall trend should be thrustworthy.

7.5.1 Outlook

Looking ahead, the next potential usage of the routines should be after the Mars
flyby in february of 2007. Before they can be used to satisfaction, however, there
are a couple of things which could be done in order to facilitate and improve the
analysis substantially. Some possible work that can be done are itemised below.

• These limitations discussed above in Section 7.5 stem from the non-linear
approach in the solution of the problem. The non-linear routines introduces
an arbitrariness in the solution, in the sense that as soon as the required
precision is met, the iterations stop irrespective of the actual parameter val-
ues determined. The practical way of solving these problems would include
removing the routines using lsqcurvefit and re-writing them using theory and
linear relationships. The advantage is that the programmer will have com-
plete control of the analysis and the process will speed up considerably (a
large part of the time consumption is located in the non-linear fitting), the
main disadvantage being the considerable development time needed for such
an approach (which is also the reason why it was not used in this thesis).

• Adding more models for the plasma, including several ion species where ap-
plicable, and taking effects such as shadowing of the booms etc. into consid-
eration would make the program more general and better at handling special
cases.

• Rewriting the program in an object-oriented programming language (e.g.
C++), thus speeding up the analysis further.

• Improving ACE-Rosetta comparison by use of the improved time lag method
by Haaland et al??.

76 CHAPTER 7. RESULTS AND DISCUSSION

These improvements mentioned above are by no means exhaustive, but it is a
good starting list. The most important improvement, and perhaps the most time-
consuming one, would be to refine the analysis. This should prove to be rewarding,
making the results easier to understand and analyse.

Chapter 8

Acknowledgements

I would like to thank my supervisor Anders Eriksson at the Swedish Institute of
Space Physics, Uppsala division (IRF-U), for helping me througout this endevour.
Thank you for providing me with the project and giving tips and help whenever
needed. Thank you for your constant enthusiasm and good spirits which really
helped to spur me on when the job got though.

I would also like to thank Reine Gill (IRF-U) for providing me with his devel-
oped code and explaining software issues as well as physical problems for me.

Thanks goes out to Jan-Erik Wahlund (IRF-U) for showing me some of his anal-
ysis and software and giving tips on how to proceed.

Lastly I would like to thank the entire staff at IRF-U, for the nice company at the
coffe-breaks and lunches and for providing a pleasant atmosphere to work in.

77

78 CHAPTER 8. ACKNOWLEDGEMENTS

Bibliography

[1] A. I. Eriksson, R. Boström, R. Gill, L. Åhlén, S.-E. Jansson, J.-E. Wahlund,
M. André, A. Mälkki, J. A. Holtet, B. Lybekk, A. Pedersen, L. G. Blomberg,
and the LAP team. RPC-LAP: The Rosetta Langmuir probe instrument.
Space Sci. Rev., in press, 2006.

[2] European Space Agency. website, http://www.esa.int.

[3] M.G. Kivelson and C.R. Russel. Introduction to Space Physics. Cambridge
University Press, 1997.

[4] website, http://www.windows.ucar.edu/tour/link=/glossary/plasmasphere.html.

[5] Magnus Billvik. The first Rosetta Earth flyby. Master’s thesis, Uppsala
University, Swedish Institute of Space Physics, 2005.

[6] Francis F. Chen. Introduction to Plasma Physics and Controlled Fusion, Vol-
ume 1: Plasma Physics. Plenum Press, first edition, 1975.

[7] Magnus Carlson. The Langmuir probes on Freja. Master’s thesis, Uppsala
University, Swedish Institute of Space Physics, 1994.

[8] J. Roussel and J. Berthelier. A study of the electrical charging of the Rosetta
orbiter: 1. numerical model. Journal of Geophysical Research, 109:12 pp.,
2004.

[9] H.M. Mott-Smith and I. Langmuir. The theory of collectors in gaseous dis-
charges. Physical Review, 28:727–763, 1926.

[10] Anders I. Eriksson and Rolf Boström. Measurements of plasma density fluctu-
ations and electric wave fields using spherical electrostatic probes. Technical
Report 220, Swedish Institute of Space Physics, April 1995.

[11] provided by Rickard Lundin and Hans Nilsson, IRF Kiruna.

79

80 BIBLIOGRAPHY

[12] Réjean J.L. Grard. Properties of the satellite photoelectron sheath derived
from photoemission laboratory measurements. Journal of Geophysical Re-
search, 78(16):2885–906, 1973.

[13] A. Pedersen. Solar wind and magnetosphere plasma diagnostics by space-
craft electrostatic potential measurements. Annales Geophysicae, 13(2):118–
29, 1995.

[14] 2006. Carr et al.

[15] website, http://www.space.irfu.se/isdat/.

[16] R. Gill. Reused code.

[17] website, http://www.srl.caltech.edu/ACE/.

[18] S. Haaland, G. Paschmann, and B. U. Ö. Sonnerup. Comment on ”a new
interpretation of weimer et al.’s solar wind propagation delay technique” by
bargatze et al. J. Geophys. Res., 111:A06102, doi:10.1029/2005JA011376,
2006.

Appendix A

User’s guide to Grafical

In which the graphical user interface (GUI), Grafical, is explained.

Figure A.1: A screen-capture of the GUI

81

82 APPENDIX A. USER’S GUIDE TO GRAFICAL

A.1 Appearance and plots

When in MATLAB, the interface is started by simply entering “grafical”, while
in the directory containing the m-files of the application. The interface looks like
Figure A.1. There are three plots, these are for (from top to bottom) probe 1 in
linear scale, probe 2 in linear scale and finally both probe 1 and 2 in the same
plot, logarithmically plotted. To the right of each plot there are slots, in which
boundaries for the axes can be entered (see Figure A.2). By pressing the button
“change axis”, the plots will update the axes. If the button is not pressed, the
plots will change axes when the next plotting is done (e.g. when stepping forward
to the next sweep). The button “enlarge plots”, plots the graphs in separate
windows, in which the plots can be zoomed and manipulated.

Figure A.2: The buttons “change axis” and “enlarge plots” can be useful when
analysing data.

A.1.1 Loading data

The first thing to note is that there exist two radiobuttons, in the lower right
corner, just above the panel marked “fitting panel” (see Figure A.3), one for each
probe. This way one can choose which probe to look at (or if one wishes, both at
the same time).

In order to analyse data one first need to obtain this data. The way to do this is
by entering the date and time of the data one wishes to obtain in the slot to the
far right of the GUI (right under the text “give date of data”) and pressing the
button “go”. The time should be specified in the format

yyyy mm dd hh mm ss

A.1. APPEARANCE AND PLOTS 83

One need not enter the entire date and time. The application will search for
the first data possible in the last digits entered. For example, if one enters 2004

03 05 22 the software will look for the first data set at ten o’clock of the fifth of
march 2004. If the user has chosen to look at both probes, the first data set found
will be for probe 1 and then the closest possible data set for probe 2, forward in
time, will be selected (since there is no possibility to obtain data from both probes
at exactly the same time).

Figure A.3: The buttons used for loading and browsing data

To browse the data the two buttons “previous” and “next” can be used. Again,
it will be probe 1 that determines the next data set. Pressing “previous”, probe 1
will step one set back, and then probe 2 will be moved to the set forward in time
that is closest to the data set of probe 1. What this mean is that while probe 1
will always respond by going forward and backward as the buttons are pressed,
probe 2 may stand still. An example may clarify things

Probe 1 is the data set 2005-03-04 at 22:15:41. The closest data set for probe
2 is 2005-03-04 at 22:18:30. By pressing “next” probe 1 will step to its next
data set, which is 2005-03-04 at 22:17:25. Now probe 2 will be moved to the
set which is closest to 2005-03-04 at 22:17:25, but this is still 2005-03-04 at

22:18:30 and probe 2 will thus stand still.

The button “redo” will load the current data set again. This is useful for com-
paring different models of the current on the same data.

84 APPENDIX A. USER’S GUIDE TO GRAFICAL

A.1.2 The fitting panel

Located in the lower right corner, the fitting panel is used to analyse the data of
the sweeps, utilising the automatic fitting routines developed (see Appendix 6).
Figure A.4 is a screen caption of the panel.

Figure A.4: The panel used to tailor the fitting procedure

By selecting “automatic fit”, the program will try to fit the sweeps in the plots.
Leaving it ticked, every new sweep will be analysed. The process of analysing
takes some time and will slow down the browsing considerably. When the fitting is
finished the results for both probes (or if only one is chosen, the information for that
probe) will be displayed in the top right corner and the fit and all the constituent
currents will be plotted together with the data. The information displayed is
itemised below (such as it is displayed in the GUI)

Iph,01 - Photoelectron current one
Iph,02 - Photoelectron current two
Tph,1 - Photoelectron temperature one, in eV
Tph,2 - Photoelectron temperature two, in eV
ni - Ion density, in particles per cm3

Ei - Ion energy, in eV
ne,1 - Plasma electron density, in particles per cm3

Te,1 - Plasma electron temperature, in eV
ne,2 - Spacecraft photoelectron density, in particles per cm3

Te,2 - Spacecraft photoelectron temperature, in eV
Ie02 - Spacecraft photoelectron current, in nA
Vsc - Spacecraft potential, in Volts
mi - effective ion mass (if applicable), in u

A.1. APPEARANCE AND PLOTS 85

The reason why the spacecraft photoelectrons are given both as a current and a
density lies in the interpretation of the data. Since the spacecraft photoelectrons
are electrons stripped from the s/c body and collected by the probe we do not
really know how homogenous they are, making them hard to discuss in terms of
densities. On the other hand, giving them in the form of a density, a comparison
between the plasma electrons and spacecraft electrons is easier to perform. This
is the reasons for having both forms in the GUI. Figure A.5 below show what the
information obtained trough the fitting can look like.

Figure A.5: A screen caption showing how the physical parameters are displayed
in the GUI

There are several radio buttons which can be selected when fitting the models to
the data. This provides the opportunity to tailor the fitting for a specific kind of
data. The buttons and what they mean are given below.

86 APPENDIX A. USER’S GUIDE TO GRAFICAL

Button Fitting

Fit all By selecting this button all data points of the sweep are
analysed.

Fit partial Here only points below Vb = 8 volts are used in the
analysis.

Quasineutral This button enforces quasineutrality between the
plasma electrons and the ions (though not for the space-
craft electrons).

Free densi-

ties

Here the densities are set free, so that the electrons and
the ions can have different densities.

Try all When selecting this button all different permutations of
models are tried and compared (from all categories, i.e.
from the fitting, ion and electron category). The differ-
ent fits are carried out in a specific order, and some fits
use the results from the fit before them as initial values.
Out of all permutations, the best one is determined and
displayed. A word of caution: this is a very slow process
since it must try all different fits, typically 10-20 times
slower than a normal fit.

Ions

Ram Ram ions are used in the fit, see Section 3.4.2.

Thermal Thermal ions are used in the fit, see Section 3.4.1. Ram
and thermal models are mutually exclusive, by selecting
one the program automatically deselects the other.

Electrons

Plasma This button allows the program to use plasma electrons
in the fit.

Spacecraft Selecting this enables spacecraft photoelectrons in the
fitting.

Photo Photoelectrons emitted from the probe are taken into
account.

A.1. APPEARANCE AND PLOTS 87

Unfortunately not all combinations can be used (i.e. they have not been imple-
mented). Plasma electrons must always be used in the fit, but the button for
selecting them is still in the GUI. This will make it easy to include this option in
a later version of the application. When a forbidden permutation is selected the
GUI will automatically select another, allowed combination.

The button “Do continuous fit” is used in conjunction with the editor just
below it. In the editor the end time should be specified in the same manner as
the start time is specified in the editor by the “Go” button. Now the GUI will
fit all data between the start and the end time with the choices set for the fitting.
Usually when using the continuous fit, the option of trying all fits will be used,
since Rosetta will probably encounter different plasmas over a lengthy period of
time. The information of the fit will be saved in a .mat file in the same format as
when using “Save Data”. See Section A.1.4.

A.1.3 The position and velocity panel

This panel is located in the middle of the GUI. It is used to get the position and
velocity, as well as the attitude, for Rosetta at the given time of the data set (if both
probes are used, it is the time of probe 1 that are used for the position). In order
to see the position and velocity the button “show position and velocity” must
be selected and to see the attitude one must select the button “show attitude”.

Figure A.6: The position and velocity panel

88 APPENDIX A. USER’S GUIDE TO GRAFICAL

By selecting the option of showing the position and attitude the process of showing
data will slow down. This is because the program must first read a file containing
specific position data and then calculate Rosettas current position. The program
can save information about certain specific time intervals (such as the different
Earth flyby’s and the Mars flyby), so these need only be loaded once, thus speed-
ing up the process for the next data set.

The drop-boxes in the upper left corner of the panel provide the option of choosing
the unit and frame of reference for the position and the velocity to be given in.
The attitude is always given as the radius vector pointing to the sun in a reference
frame fixed in Rosetta. The y-axis is along the solar panels and the negative x-axis
point out through the side of the spacecraft on which the probes are located.

A.1.4 Save Data

Saving the current data is done by pressing the “Save Data” button. Only the
fit of the current set will be saved. In order to save several sets the user must
utilise the “Do continuos fit” option (see Section A.1.2). The information will
be saved in a .txt file named

data probeX timeYYYYMMDDTHHMMSS.txt

where X can be either 1 or 2. The information from the same data set is saved
on the same row, in several columns. If several sets of data are saved they will be
added to the existing file, on the next row. Below, the information that is saved
in each row for a single data set, is given.

A.1. APPEARANCE AND PLOTS 89

90 APPENDIX A. USER’S GUIDE TO GRAFICAL

Column Saved information

1 Year
2 Month
3 Day
4 Hour
5 Minute
6 Second
7 Code for coordinate system; 1 = GSE, 2 = GEI, 3 = GEA, 4 = HEI and

5 = HEA
8-10 Position coordinates; x, y and z in [m]
11-13 Velocity coordinates; vx, vy and vz [m/s]
14-19 Attitude of Rosetta; φ, θ, ρ, vφ, vθ and vρ

20 The probe used, 1 or 2
21 The kind of sweep looked at; 1 = up, 2 = down, 3 = up and down and

4 = down and up
22 Minimum Vb in [V]
23 Maximum Vb in [V]
24 Step size in [V]
25 Number of data points in the original sweep
26 The time the sweep took in [s]
27-35 The mathematical parameters in the following order: a b c d g h Vsc f z
36 The error
37 The model used:

1 = plasma electrons, ram ions and partial data sweep
11 = plasma electrons, ram ions and full (all) data sweep
2 = plasma and photoelectrons, ram ions and partial data sweep
21 = plasma and photoelectrons, ram ions and full data sweep
3 = plasma electrons, thermal ions and partial data sweep
31 = plasma electrons, thermal ions and full data sweep
4 = plasma and photoelectrons, thermal ions and partial data sweep
41 = plasma and photoelectrons, thermal ions and full data sweep
5 = plasma and s/c-photoelectrons, ram ions and full data sweep
51 = plasma and s/c-photoelectrons, ram ions and partial data sweep
6 = plasma, photo- and s/c-photoelectrons, ram ions and full data sweep
61 = plasma, photo- and s/c-photoelectrons, ram ions and partial data sweep
7 = plasma and s/c-photoelectrons, thermal ions and full data sweep
71 = plasma and s/c-photoelectrons, thermal ions and partial data sweep
8 = plasma, photo- and s/c-photoelectrons, thermal ions and full data sweep
81 = plasma, photo- and s/c-photoelectrons, thermal ions and partial data
sweep

38 If try all is used, all models will be saved. A column containing the value
NaN will separate the models and then the parameters, error and what kind
of model used will be given (11 columns in total).

A.1. APPEARANCE AND PLOTS 91

A.1.5 Set spacecraft potential manually

This button (see Figure A.3) can be used to set the spacecraft potential manually
if one is unsatisfied with the potential the automatic process has found. When
the button has been pressed the left mousebutton is used to place the spacecraft
potential in the plot. The GUI will show where the potential has been set. Clicking
the left mouse button again designates that the spacecraft potential is satisfactory
set. To redo the procedure press the right mousebutton. This step is repeated
until the spacecraft potential has been set for both probes. Now this spacecraft
potential will be used as the initial guess for Vsc in the nonlinear fit instead of the
potential obtained through the second derivative (see Section 6.2.2).

92 APPENDIX A. USER’S GUIDE TO GRAFICAL

Appendix B

The software routines

In which the developed code is gathered.

B.1 Main program

B.1.1 grafical.m

function varargout = grafical(varargin)

% GRAFICAL M-file for grafical.fig

% GRAFICAL, by itself, creates a new GRAFICAL or raises the existing

% singleton*.

%

% H = GRAFICAL returns the handle to a new GRAFICAL or the handle to

% the existing singleton*.

%

% GRAFICAL(’CALLBACK’,hObject,eventData,handles,...) calls the local

% function named CALLBACK in GRAFICAL.M with the given input arguments.

%

% GRAFICAL(’Property’,’Value’,...) creates a new GRAFICAL or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before grafical_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to grafical_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help grafical

% Last Modified by GUIDE v2.5 08-Feb-2006 13:41:23

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @grafical_OpeningFcn, ...

93

94 APPENDIX B. THE SOFTWARE ROUTINES

’gui_OutputFcn’, @grafical_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before grafical is made visible.

function grafical_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to grafical (see VARARGIN)

%%

%Load the structures, connect to database%

%%

ROS = Rosetta_info;

PAR1 = parameter_struct;

PAR2 = parameter_struct;

if(ROS.DB == 0) %Connect to Database only if not already connected

ROS.DB = Mat_DbOpen(ROS.Database); %Connecting to ISDAT

end

if(ROS.DB ~= 0) %If connected to ISDAT

[ROS.DAT_CONT1, ROS.DAT_DUR1] = isGetContentLite(ROS.DB, ROS.PROJ,...

ROS.MEM, ROS.INST, ROS.SIG, ROS.SEN1, ROS.CHAN1, ROS.PARAM);

[ROS.DAT_CONT2, ROS.DAT_DUR2] = isGetContentLite(ROS.DB, ROS.PROJ,...

ROS.MEM, ROS.INST, ROS.SIG, ROS.SEN2, ROS.CHAN1, ROS.PARAM);

end

%Set starting handles

%handles for data

handles.where1 = 0; %Setting some handles

handles.where2 = 0;

handles.ROS = ROS; %Sets ROS as one of the handles

handles.PAR1 = PAR1; %Sets PAR1 as one of the handles

handles.PAR2 = PAR2; %Sets PAR2 as one of the handles

handles.data = 0; %data = 0 no data, data = 1 data

handles.start = 0; %Where to start dataplotting

handles.end_of_data = 0; %Where to stop the continous fitting

handles.fb = 0; %0 stands for forward

%Handles for misc.

handles.Vsc_manual = 0;

handles.force = 0;

handles.debug = 0; %Debug mode on or off?

%handles for choosing axis

handles.xmax_co = 0;

handles.xmin_co = 0;

handles.xmax_co2 = 0;

B.1. MAIN PROGRAM 95

handles.xmin_co2 = 0;

handles.xmax_co3 = 0;

handles.xmin_co3 = 0;

handles.ymax_co = 0;

handles.ymin_co = 0;

handles.ymax_co2 = 0;

handles.ymin_co2 = 0;

handles.ymax_co3 = 0;

handles.ymin_co3 = 0;

%handles for probes

handles.show_probe1 = 1; %Show both probes from start

handles.show_probe2 = 1;

%handles for attitude and position

handles.system_choice = 1; %GSE Default

handles.unit_choice = 1; %Re default

handles.show_posvel = 0; %Do not show as default

handles.show_att = 0; %Not showing attitude as default

handles.events_loaded = zeros(5,3);

handles.RVA_data = 0;

handles.enl_plots = 0;

handles.vsc = 0;

%handles for fitting

handles.fit = 0;

handles.fit_all = 0; %From start only fit_ion

handles.fit_partial = 1; %will be used and compared

handles.fit_free_densities = 0; %No free densities from start

%since it should be

handles.fit_quasineutral = 1; %quasineutral

handles.ion_mass = 1.6726e-27; %1 proton mass from start (u)

handles.fit_try_all = 0; %Try all possibilities, off

%from start

%ions

handles.i_ram = 1; %Start with default ram ions

handles.i_therm = 0;

%handles.i_mixed = 0;

%electrons

handles.e_plasma = 1; %Start with e_plasma and e_photo as default

handles.e_sc = 0;

handles.e_photo = 1;

%clear the axes

axes(handles.parameter_edit);

axis off;

axes(handles.output_text);

axis off;

axes(handles.pos_x_disp);

axis off;

axes(handles.pos_y_disp);

axis off;

axes(handles.pos_z_disp);

axis off;

axes(handles.pos_r_disp);

axis off;

axes(handles.vel_x_disp);

axis off;

axes(handles.vel_y_disp);

axis off;

axes(handles.vel_z_disp);

axis off;

96 APPENDIX B. THE SOFTWARE ROUTINES

axes(handles.vel_speed_disp);

axis off;

axes(handles.pos_phi_disp);

axis off;

axes(handles.pos_theta_disp);

axis off;

axes(handles.vel_phi_disp);

axis off;

axes(handles.vel_theta_disp);

axis off;

%Read the data needed%

%timediff = datenum([-4713 1 1 12 0 0])+327;

%[handles.RE, handles.datee,handles.jde] = readjpltraj(’e_traj_hea.txt’); %jordens bana i hea

%[handles.VE, handles.dateve,handles.jdve] = readjpltraj(’ve_traj_hea.txt’); %jordens hast i hea

%[handles.RS, handles.dates,handles.jds] = readjpltraj(’s_traj_gea.txt’); %solens bana i gea

%handles.jde = handles.jde + timediff;

%handles.jdve = handles.jdve + timediff;

%handles.jds = handles.jds + timediff;

% Choose default command line output for grafical

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes grafical wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = grafical_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles;

% --- Executes on button press in button_back.

function button_back_Callback(hObject, eventdata, handles)

% hObject handle to button_back (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.output_text);

cla;

text(0.0,1.0,[’Work in progress...’],’FontSize’,14,’Color’,’green’);

pause(0.1)

handles.fb = 1;

handles.where1 = handles.where1-1;

handles.where2 = handles.where2-1;

[handles.ROS,handles.PAR1,handles.PAR2,handles.events_loaded,...

handles.RVA_data] = get_datagraf(handles.ROS,handles.PAR1,...

handles.PAR2,hObject,eventdata,handles);

handles.where1 = handles.ROS.where1;

handles.where2 = handles.ROS.where2;

guidata(hObject, handles);

plot_sweepgraf2(handles.ROS,handles.PAR1,handles.PAR2,handles);

displayinfo(handles.ROS,handles.PAR1,handles.PAR2,handles);

% --- Executes on button press in button_next.

function button_next_Callback(hObject, eventdata, handles)

B.1. MAIN PROGRAM 97

% hObject handle to button_next (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.output_text);

cla;

text(0.0,1.0,[’Work in progress...’],’FontSize’,14,’Color’,’green’);

pause(0.1);

handles.fb = 0;

handles.where1 = handles.where1+1;

handles.where2 = handles.where2+1;

[handles.ROS,handles.PAR1,handles.PAR2,handles.events_loaded,...

handles.RVA_data] = get_datagraf(handles.ROS,handles.PAR1,...

handles.PAR2,hObject,eventdata,handles);

handles.where1 = handles.ROS.where1;

handles.where2 = handles.ROS.where2;

guidata(hObject, handles);

plot_sweepgraf2(handles.ROS,handles.PAR1,handles.PAR2,handles);

displayinfo(handles.ROS,handles.PAR1,handles.PAR2,handles);

function editor_Callback(hObject, eventdata, handles)

% hObject handle to editor (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of editor as text

% str2double(get(hObject,’String’)) returns contents of editor as a double

handles.start = get(hObject,’String’);

hajime = str2num(handles.start);;

stl = size(hajime,2);

if (stl < 1)

return;

end

if (stl == 1)

hajime(2:3) = 0;

end

if (stl == 2)

hajime(3) = 0;

end

if (stl == 4)

hajime(5:6) = 0;

end

if (stl == 5)

hajime(6) = 0;

end

handles.start = datenum(hajime);

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function editor_CreateFcn(hObject, eventdata, handles)

% hObject handle to editor (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in button_go.

98 APPENDIX B. THE SOFTWARE ROUTINES

function button_go_Callback(hObject, eventdata, handles)

% hObject handle to button_go (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.output_text);

cla;

text(0.0,1.0,[’Work in progress...’],’FontSize’,14,’Color’,’green’);

pause(0.1);

handles.fb = 0;

handles.where1 = handles.start;

handles.where2 = 0;

[handles.ROS,handles.PAR1,handles.PAR2,handles.events_loaded,...

handles.RVA_data] = get_datagraf(handles.ROS,handles.PAR1,...

handles.PAR2,hObject,eventdata,handles);

handles.where1 = handles.ROS.where1;

handles.where2 = handles.ROS.where2;

guidata(hObject, handles);

% if handles.ROS.where1 == 0 && handles.ROS.where2 == 0

% return;

% end

plot_sweepgraf2(handles.ROS, handles.PAR1,handles.PAR2, handles);

displayinfo(handles.ROS,handles.PAR1,handles.PAR2,handles);

function parameter_edit_Callback(hObject, eventdata, handles)

% hObject handle to parameter_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of parameter_edit as text

% str2double(get(hObject,’String’)) returns contents of parameter_edit as a double

% --- Executes during object creation, after setting all properties.

function parameter_edit_CreateFcn(hObject, eventdata, handles)

% hObject handle to parameter_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes during object creation, after setting all properties.

function Iph_02_edit_CreateFcn(hObject, eventdata, handles)

% hObject handle to Iph_02_edit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in save_data.

function save_data_Callback(hObject, eventdata, handles)

% hObject handle to save_data (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

B.1. MAIN PROGRAM 99

save_data(handles,handles.ROS,handles.PAR1,1);

save_data(handles,handles.ROS,handles.PAR2,2);

% --- Executes on button press in set_Vsc.

function set_Vsc_Callback(hObject, eventdata, handles)

% hObject handle to set_Vsc (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

if (handles.show_probe1 == 1)

handles.PAR1.Vsc = scpot_manual(handles,handles.PAR1.Vsc,1);

handles.Vsc_manual = 1;

guidata(hObject,handles);

[handles.PAR1,handles.events_loaded,handles.RVA_data] = gothrough(handles.ROS.V_DAT1,...

handles.ROS.I_DAT1,handles.PAR1,handles.ROS,handles,1);

end

if (handles.show_probe2 == 1)

handles.PAR2.Vsc = scpot_manual(handles,handles.PAR2.Vsc,2);

handles.Vsc_manual = 1;

guidata(hObject,handles);

[handles.PAR2,handles.events_loaded,handles.RVA_data] = gothrough(handles.ROS.V_DAT2,...

handles.ROS.I_DAT2,handles.PAR2,handles.ROS,handles,2);

end

handles.Vsc_manual = 0;

guidata(hObject,handles);

plot_sweepgraf2(handles.ROS, handles.PAR1,handles.PAR2,handles);

displayinfo(handles.ROS,handles.PAR1,handles.PAR2,handles);

% --- Executes on button press in Vsc_free.

function Vsc_free_Callback(hObject, eventdata, handles)

% hObject handle to Vsc_free (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of Vsc_free

handles.Vsc_free = get(hObject,’Value’);

guidata(hObject,handles);

% --- Executes on button press in foce_param.

function foce_param_Callback(hObject, eventdata, handles)

% hObject handle to foce_param (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of foce_param

handles.force = get(hObject,’Value’);

guidata(hObject,handles);

if handles.force == 1

handles.PAR1 = force_model(handles.ROS.V_DAT1,handles.ROS.I_DAT1,...

handles.PAR1,handles,1);

handles.PAR2 = force_model(handles.ROS.V_DAT2,handles.ROS.I_DAT2,...

handles.PAR2,handles,2);

guidata(hObject,handles);

displayinfo(handles.ROS,handles.PAR1,handles.PAR2,handles);

plot_sweepgraf2(handles.ROS,handles.PAR1,handles.PAR2,handles);

end

function xmax_coord_Callback(hObject, eventdata, handles)

% hObject handle to edit24 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

100 APPENDIX B. THE SOFTWARE ROUTINES

% Hints: get(hObject,’String’) returns contents of edit24 as text

% str2double(get(hObject,’String’)) returns contents of edit24 as a double

handles.xmax_co = str2double(get(hObject,’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function xmax_coord_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit24 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function xmin_coord_Callback(hObject, eventdata, handles)

% hObject handle to xmin_coord (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of xmin_coord as text

% str2double(get(hObject,’String’)) returns contents of xmin_coord as a double

handles.xmin_co = str2double(get(hObject,’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function xmin_coord_CreateFcn(hObject, eventdata, handles)

% hObject handle to xmin_coord (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function ymax_coord_Callback(hObject, eventdata, handles)

% hObject handle to ymax_coord (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of ymax_coord as text

% str2double(get(hObject,’String’)) returns contents of ymax_coord as a double

handles.ymax_co = str2double(get(hObject, ’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function ymax_coord_CreateFcn(hObject, eventdata, handles)

% hObject handle to ymax_coord (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

B.1. MAIN PROGRAM 101

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function ymin_coord_Callback(hObject, eventdata, handles)

% hObject handle to ymin_coord (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of ymin_coord as text

% str2double(get(hObject,’String’)) returns contents of ymin_coord as a double

handles.ymin_co = str2double(get(hObject, ’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function ymin_coord_CreateFcn(hObject, eventdata, handles)

% hObject handle to ymin_coord (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function xmax_coord2_Callback(hObject, eventdata, handles)

% hObject handle to xmax_coord2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of xmax_coord2 as text

% str2double(get(hObject,’String’)) returns contents of xmax_coord2 as a double

handles.xmax_co2 = str2double(get(hObject, ’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function xmax_coord2_CreateFcn(hObject, eventdata, handles)

% hObject handle to xmax_coord2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function xmin_coord2_Callback(hObject, eventdata, handles)

% hObject handle to xmin_coord2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of xmin_coord2 as text

% str2double(get(hObject,’String’)) returns contents of xmin_coord2 as a double

handles.xmin_co2 = str2double(get(hObject, ’String’));

102 APPENDIX B. THE SOFTWARE ROUTINES

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function xmin_coord2_CreateFcn(hObject, eventdata, handles)

% hObject handle to xmin_coord2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function ymax_coord2_Callback(hObject, eventdata, handles)

% hObject handle to ymax_coord2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of ymax_coord2 as text

% str2double(get(hObject,’String’)) returns contents of ymax_coord2 as a double

handles.ymax_co2 = str2double(get(hObject, ’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function ymax_coord2_CreateFcn(hObject, eventdata, handles)

% hObject handle to ymax_coord2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function ymin_coord2_Callback(hObject, eventdata, handles)

% hObject handle to ymin_coord2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of ymin_coord2 as text

% str2double(get(hObject,’String’)) returns contents of ymin_coord2 as a double

handles.ymin_co2 = str2double(get(hObject, ’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function ymin_coord2_CreateFcn(hObject, eventdata, handles)

% hObject handle to ymin_coord2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

B.1. MAIN PROGRAM 103

function xmax_coord3_Callback(hObject, eventdata, handles)

% hObject handle to xmax_coord3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of xmax_coord3 as text

% str2double(get(hObject,’String’)) returns contents of xmax_coord3 as a double

handles.xmax_co3 = str2double(get(hObject, ’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function xmax_coord3_CreateFcn(hObject, eventdata, handles)

% hObject handle to xmax_coord3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function xmin_coord3_Callback(hObject, eventdata, handles)

% hObject handle to xmin_coord3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of xmin_coord3 as text

% str2double(get(hObject,’String’)) returns contents of xmin_coord3 as a double

handles.xmin_co3 = str2double(get(hObject, ’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function xmin_coord3_CreateFcn(hObject, eventdata, handles)

% hObject handle to xmin_coord3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function ymax_coord3_Callback(hObject, eventdata, handles)

% hObject handle to ymax_coord3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of ymax_coord3 as text

% str2double(get(hObject,’String’)) returns contents of ymax_coord3 as a double

handles.ymax_co3 = str2double(get(hObject, ’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function ymax_coord3_CreateFcn(hObject, eventdata, handles)

% hObject handle to ymax_coord3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

104 APPENDIX B. THE SOFTWARE ROUTINES

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

function ymin_coord3_Callback(hObject, eventdata, handles)

% hObject handle to ymin_coord3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of ymin_coord3 as text

% str2double(get(hObject,’String’)) returns contents of ymin_coord3 as a double

handles.ymin_co3 = str2double(get(hObject, ’String’));

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function ymin_coord3_CreateFcn(hObject, eventdata, handles)

% hObject handle to ymin_coord3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on selection change in system_list.

function system_list_Callback(hObject, eventdata, handles)

% hObject handle to system_list (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’String’) returns system_list contents as cell array

% contents{get(hObject,’Value’)} returns selected item from system_list

handles.system_choice = get(hObject,’Value’);

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function system_list_CreateFcn(hObject, eventdata, handles)

% hObject handle to system_list (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on selection change in unit_list.

function unit_list_Callback(hObject, eventdata, handles)

% hObject handle to unit_list (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

B.1. MAIN PROGRAM 105

% Hints: contents = get(hObject,’String’) returns unit_list contents as cell array

% contents{get(hObject,’Value’)} returns selected item from unit_list

handles.unit_choice = get(hObject,’Value’);

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function unit_list_CreateFcn(hObject, eventdata, handles)

% hObject handle to unit_list (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in show_position.

function show_position_Callback(hObject, eventdata, handles)

% hObject handle to show_position (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of show_position

handles.show_posvel = get(hObject,’Value’);

guidata(hObject,handles);

% --- Executes on button press in show_attitude.

function show_attitude_Callback(hObject, eventdata, handles)

% hObject handle to show_attitude (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of show_attitude

handles.show_att = get(hObject,’Value’);

guidata(hObject,handles);

% --- Executes on selection change in angles_list.

function angles_list_Callback(hObject, eventdata, handles)

% hObject handle to angles_list (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’String’) returns angles_list contents as cell array

% contents{get(hObject,’Value’)} returns selected item from angles_list

% --- Executes during object creation, after setting all properties.

function angles_list_CreateFcn(hObject, eventdata, handles)

% hObject handle to angles_list (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

106 APPENDIX B. THE SOFTWARE ROUTINES

% --- Executes on button press in axis_change.

function axis_change_Callback(hObject, eventdata, handles)

% hObject handle to axis_change (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

plot_sweepgraf2(handles.ROS,handles.PAR1,handles.PAR2,handles);

% --- Executes on button press in auto_fit_check.

function auto_fit_check_Callback(hObject, eventdata, handles)

% hObject handle to auto_fit_check (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of auto_fit_check

handles.fit = get(hObject,’Value’);

guidata(hObject,handles);

% --- Executes on button press in enlarge_plots.

function enlarge_plots_Callback(hObject, eventdata, handles)

% hObject handle to enlarge_plots (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.enl_plots = 1;

guidata(hObject,handles);

plot_sweepgraf2(handles.ROS,handles.PAR1,handles.PAR2,handles);

handles.enl_plots = 0;

guidata(hObject,handles);

% --- Executes on button press in cont_fit.

function cont_fit_Callback(hObject, eventdata, handles)

% hObject handle to cont_fit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.output_text);

cla;

text(0.0,1.0,[’Performing continous fit...’],’FontSize’,14,’Color’,’green’);

pause(0.1);

%Start at time given by user

handles.fb = 0;

handles.where1 = handles.start;

handles.where2 = 0;

where = handles.start;

mate = handles.end_of_data;

dataP1 = [];

dataP2 = [];

while where <= mate %Until user specified end

[handles.ROS,handles.PAR1,handles.PAR2,handles.events_loaded,...

handles.RVA_data] = get_datagraf(handles.ROS,handles.PAR1,...

handles.PAR2,hObject,eventdata,handles);

handles.where1 = handles.ROS.where1;

handles.where2 = handles.ROS.where2;

if (handles.show_probe1 == 1)

handles.where1 = handles.where1+1;

where = datenum(handles.ROS.TIME1(1,1:6));

else

B.1. MAIN PROGRAM 107

handles.where2 = handles.where2+1;

where = datenum(handles.ROS.TIME2(1,1:6));

end

if (handles.show_probe1 == 1)

save_data(handles,handles.ROS,handles.PAR1,1);

end

if (handles.show_probe2 == 1)

save_data(handles,handles.ROS,handles.PAR2,2);

end

end

function editor2_Callback(hObject, eventdata, handles)

% hObject handle to editor2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String’) returns contents of editor2 as text

% str2double(get(hObject,’String’)) returns contents of editor2 as a double

handles.end_of_data = get(hObject,’String’);

mate = str2num(handles.end_of_data);;

stl = size(mate,2);

if (stl < 1)

return;

end

if (stl == 1)

mate(2:3) = 0;

end

if (stl == 2)

mate(3) = 0;

end

if (stl == 4)

mate(5:6) = 0;

end

if (stl == 5)

mate(6) = 0;

end

handles.end_of_data = datenum(mate);

guidata(hObject,handles);

% --- Executes during object creation, after setting all properties.

function editor2_CreateFcn(hObject, eventdata, handles)

% hObject handle to editor2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% --- Executes on button press in ion_therm.

function ion_therm_Callback(hObject, eventdata, handles)

% hObject handle to ion_therm (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of ion_therm

handles.i_therm = get(hObject,’Value’);

108 APPENDIX B. THE SOFTWARE ROUTINES

if (handles.i_therm == 1)

set(handles.ion_ram,’Value’,0);

handles.i_ram = get(handles.ion_ram,’Value’);

%See so that allowed combinations are used

if (handles.e_plasma == 0)

set(handles.el_plasma,’Value’,1);

handles.e_plasma = get(handles.el_plasma,’Value’);

axes(handles.output_text);

cla;

text(0.0,1.0,[’Sorry, combination not supported, use plasma electrons’],...

’FontSize’,14,’Color’,’green’);

pause(3)

cla;

end

end

guidata(hObject,handles);

% --- Executes on button press in ion_ram.

function ion_ram_Callback(hObject, eventdata, handles)

% hObject handle to ion_ram (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of ion_ram

handles.i_ram = get(hObject,’Value’);

if (handles.i_ram == 1)

set(handles.ion_therm,’Value’,0);

handles.i_therm = get(handles.ion_therm,’Value’);

%See so that allowed combinations are used

if (handles.e_plasma == 0)

set(handles.el_plasma,’Value’,1);

handles.e_plasma = get(handles.el_plasma,’Value’);

axes(handles.output_text);

cla;

text(0.0,1.0,[’Sorry, combination not supported, use plasma electrons’],...

’FontSize’,14,’Color’,’green’);

pause(3)

cla;

end

end

guidata(hObject,handles);

% --- Executes on button press in el_sc.

function el_sc_Callback(hObject, eventdata, handles)

% hObject handle to el_sc (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of el_sc

handles.e_sc = get(hObject,’Value’);

guidata(hObject,handles);

%See so that allowed combinations are used

if (handles.e_plasma == 0)

set(handles.el_plasma,’Value’,1);

handles.e_plasma = get(handles.el_plasma,’Value’);

axes(handles.output_text);

cla;

text(0.0,1.0,[’Sorry, combination not supported, use plasma electrons’],...

B.1. MAIN PROGRAM 109

’FontSize’,14,’Color’,’green’);

pause(3)

cla;

end

guidata(hObject,handles);

% --- Executes on button press in el_photo.

function el_photo_Callback(hObject, eventdata, handles)

% hObject handle to el_photo (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of el_photo

handles.e_photo = get(hObject,’Value’);

if (handles.e_plasma == 0)

set(handles.el_plasma,’Value’,1);

handles.e_plasma = get(handles.el_plasma,’Value’);

axes(handles.output_text);

cla;

text(0.0,1.0,[’Sorry, combination not supported, use plasma electrons’],...

’FontSize’,14,’Color’,’green’);

pause(3)

cla;

end

guidata(hObject,handles);

% --- Executes on button press in el_plasma.

function el_plasma_Callback(hObject, eventdata, handles)

% hObject handle to el_plasma (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of el_plasma

handles.e_plasma = get(hObject,’Value’);

if (handles.e_plasma == 0)

set(handles.el_plasma,’Value’,1);

handles.e_plasma = get(handles.el_plasma,’Value’);

axes(handles.output_text);

cla;

text(0.0,1.0,[’Sorry, combination not supported, use plasma electrons’],...

’FontSize’,14,’Color’,’green’);

pause(3)

cla;

end

guidata(hObject,handles);

% --- Executes on button press in fit_all_data.

function fit_all_data_Callback(hObject, eventdata, handles)

% hObject handle to fit_all_data (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of fit_all_data

handles.fit_all = get(hObject,’Value’);

if (handles.fit_all == 1)

set(handles.fit_partial_data,’Value’,0);

handles.fit_partial = get(handles.fit_partial_data,’Value’);

end

guidata(hObject,handles);

% --- Executes on button press in fit_partial_data.

110 APPENDIX B. THE SOFTWARE ROUTINES

function fit_partial_data_Callback(hObject, eventdata, handles)

% hObject handle to fit_partial_data (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of fit_partial_data

handles.fit_partial = get(hObject,’Value’);

if (handles.fit_partial == 1)

set(handles.fit_all_data,’Value’,0);

handles.fit_all = get(handles.fit_all_data,’Value’);

end

guidata(hObject,handles);

% --- Executes on button press in fit_quasi.

function fit_quasi_Callback(hObject, eventdata, handles)

% hObject handle to fit_quasi (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of fit_quasi

handles.fit_quasineutral = get(hObject,’Value’);

if (handles.fit_quasineutral == 1)

set(handles.fit_free_dens,’Value’,0);

handles.fit_free_densities = get(handles.fit_free_dens,’Value’);

end

guidata(hObject,handles);

% --- Executes on button press in fit_free_dens.

function fit_free_dens_Callback(hObject, eventdata, handles)

% hObject handle to fit_free_dens (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of fit_free_dens

handles.fit_free_densities = get(hObject,’Value’);

if (handles.fit_free_densities == 1)

set(handles.fit_quasi,’Value’,0);

handles.fit_quasineutral = get(handles.fit_quasi,’Value’);

end

guidata(hObject,handles);

% --- Executes on button press in show_P1.

function show_P1_Callback(hObject, eventdata, handles)

% hObject handle to show_P1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of show_P1

handles.show_probe1 = get(hObject,’Value’);

guidata(hObject,handles);

% --- Executes on button press in show_P2.

function show_P2_Callback(hObject, eventdata, handles)

% hObject handle to show_P2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of show_P2

handles.show_probe2 = get(hObject,’Value’);

B.1. MAIN PROGRAM 111

guidata(hObject,handles);

% --- Executes on button press in fit_tryall.

function fit_tryall_Callback(hObject, eventdata, handles)

% hObject handle to fit_tryall (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of fit_tryall

handles.fit_try_all = get(hObject,’Value’);

guidata(hObject,handles);

% --- Executes on button press in button_redofit.

function button_redofit_Callback(hObject, eventdata, handles)

% hObject handle to button_redofit (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.output_text);

cla;

text(0.0,1.0,[’Work in progress...’],’FontSize’,14,’Color’,’green’);

pause(0.1);

handles.fb = 0;

[handles.ROS,handles.PAR1,handles.PAR2,handles.events_loaded,...

handles.RVA_data] = get_datagraf(handles.ROS,handles.PAR1,...

handles.PAR2,hObject,eventdata,handles);

handles.where1 = handles.ROS.where1;

handles.where2 = handles.ROS.where2;

guidata(hObject, handles);

plot_sweepgraf2(handles.ROS, handles.PAR1,handles.PAR2, handles);

displayinfo(handles.ROS,handles.PAR1,handles.PAR2,handles);

% --- Executes on button press in debug_mode.

function debug_mode_Callback(hObject, eventdata, handles)

% hObject handle to debug_mode (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,’Value’) returns toggle state of debug_mode

handles.debug = get(hObject,’Value’);

guidata(hObject,handles);

B.1.2 Rosetta info.m

%Rosetta_Info.m, A structure for the Rosetta mission spacecraft

function ROS = Rosetta_Info()

ROS = [];

ROS.DB = 0; %Not connected to database

ROS.Database = ’squid.irfu.se:24’; %ISDAT Host server

ROS.PROJ = ’Rosetta’; %Project name

ROS.MEM = ’RPC’; %Member name

ROS.INST = ’LAP_Calibrated’; %Instrument name

ROS.SIG = ’’; %Signal name, not given

ROS.SEN1 = ’P1’; %Sensor name, P1

ROS.SEN2 = ’P2’; %Sensor name, P2

112 APPENDIX B. THE SOFTWARE ROUTINES

ROS.CHAN1 = ’’; %Channel name 1, not given

ROS.CHAN2 = ’’; %Channel name 2, not given

ROS.PARAM = ’’; %Parameter name, not given

%For save-information

ROS.DAT_LENGTH1 = []; %Nr. of points in the sweep

ROS.DAT_LENGTH2 = [];

ROS.DUR1 = []; %Duration of sweep

ROS.DUR2 = [];

ROS.MIN_Vb1 = []; %Min bias for probe 1

ROS.MIN_Vb2 = [];

ROS.MAX_Vb1 = []; %Max bias for probe 1

ROS.MAX_Vb2 = [];

ROS.STEP_SIZE1 = []; %Step size probe 1

ROS.STEP_SIZE2 = [];

ROS.KIND1 = []; %What kind of sweep probe 1?

%Up/down, down, up, down/up

ROS.KIND2 = [];

ROS.DAT_CONT1 = []; %No Data Contents yet

ROS.DAT_DUR1 = []; %Has to do with data contents above

ROS.DAT_CONT2 = []; %No Data Contents yet

ROS.DAT_DUR2 = [];

ROS.I_DAT1 = []; %Sweep bias data will be saved here%

ROS.V_DAT1 = []; %And here too

ROS.TIME1 = []; %Sweep time will be saved here

ROS.I_DAT2 = []; %Sweep bias data will be saved here%

ROS.V_DAT2 = []; %And here too

ROS.TIME2 = []; %Sweep time will be saved here

ROS.where = 0;

ROS.PROBE_RAD = 0.025; %The probe radius, [m]

ROS.PROBE_AREA = 4*pi*(ROS.PROBE_RAD)^2; %The probe area, [m^2]

disp([ROS.PROJ, ’ spacecraft information structure set’]);

B.2 Handling the data

B.2.1 get datagraf.m

%GET_DATAGRAF provides the data from the ISDAT server, specifically for the

% gui developed.

%

% [ROS,PAR1,PAR2,events_loaded,RVA_data] = get_datagraf(ROS,PAR1,PAR2,...

% hObject,eventdata,handles)

function [ROS,PAR1,PAR2,events_loaded,RVA_data] = ...

get_datagraf(ROS,PAR1,PAR2, hObject,eventdata,handles)

ROS = handles.ROS;

PAR1 = handles.PAR1;

PAR2 = handles.PAR2;

[ROS,PAR1,PAR2] = clearRP(handles);

events_loaded = 0;

RVA_data = 0;

nodat = 0; %Setting up some of

B.2. HANDLING THE DATA 113

ROS.SIG = ’Sweep’; %the information

ROS.CHAN1 = ’Ip’;

ROS.CHAN2 = ’Vp’;

%surpress warnings

warning off;

handles.where2

if (handles.where2 == 0) %this is the trigger for looking at data

time = handles.start;

[jd1,start_P1] = search_dat(ROS,time,1); %Look for first sweep

[jd2,start_P2] = search_dat(ROS,time,2);

else

start_P1 = handles.where1;

start_P2 = handles.where2;

end

%Set some output now

ROS.where1 = start_P1;

ROS.where2 = start_P2;

%To continue the loop

dat1 = 0;

dat2 = 0;

if (handles.show_probe1 == 1)

i = start_P1;

else

i = start_P2;

end

if (handles.show_probe1 == 1)

%Probe 1

while dat1 == 0

[t_1,I_1] = isGetDataLite(ROS.DB, ROS.DAT_CONT1(i,:), ROS.DAT_DUR1(i),...

ROS.PROJ, ROS.MEM, ROS.INST, ROS.SIG, ROS.SEN1, ROS.CHAN1);

[t_1,V_1] = isGetDataLite(ROS.DB, ROS.DAT_CONT1(i,:), ROS.DAT_DUR1(i),...

ROS.PROJ, ROS.MEM, ROS.INST, ROS.SIG, ROS.SEN1, ROS.CHAN2);

%It must be a bias sweep and there are strange data I don’t understand

%that I need to get rid of

if length(V_1) ~= 0 && length(find(diff(V_1) ~= 0)) > 0

%Probe 1

t_1 = fromepoch(t_1);

ROS.I_RAW1 = I_1;

ROS.V_RAW1 = V_1;

ROS.TIME_RAW1 = t_1;

[V_1,I_1,t_1] = adjust_data(V_1,I_1,t_1); %adjusting the data

ROS.I_DAT1 = I_1;

ROS.V_DAT1 = V_1;

ROS.TIME1 = t_1;

%Setting some information

ROS.DUR1 = ROS.DAT_DUR1(i);

ROS.DAT_LENGTH1 = length(V_1);

ROS.MIN_Vb1 = min(V_1);

ROS.MAX_Vb1 = max(V_1);

test = diff(V_1);

if (test >= 0)

kind = 1;

else if (test <= 0)

kind = 2;

114 APPENDIX B. THE SOFTWARE ROUTINES

else if (RIS.V_RAW1(1) < 0)

kind = 3; %down up and up down

else

kind = 4;

end

end

end

ind = (find(diff(V_1) ~= 0,15));

ROS.STEP_SIZE1 = test(ind(15)); %Might be problems in beginning

ROS.KIND1 = kind; %Upp?t svep just nu

%Work on the data but only if model-box is checked

ROS.where1 = i;

[PAR1,events_loaded,RVA_data] = gothrough(V_1,I_1,PAR1,ROS,handles,1);

dat1 = 1;

else

if handles.fb == 0

i = i+1;

else

i = i-1;

end

end

end

end

%Probe 2

if (handles.show_probe2 == 1)

while dat2 == 0

[t_2,I_2] = isGetDataLite(ROS.DB, ROS.DAT_CONT2(i,:), ROS.DAT_DUR2(i),...

ROS.PROJ, ROS.MEM, ROS.INST, ROS.SIG, ROS.SEN2, ROS.CHAN1);

[t_2,V_2] = isGetDataLite(ROS.DB, ROS.DAT_CONT2(i,:), ROS.DAT_DUR2(i),...

ROS.PROJ, ROS.MEM, ROS.INST, ROS.SIG, ROS.SEN2, ROS.CHAN2);

%It must be a bias sweep and there are strange data I don’t understand

%that I need to get rid of

if length(V_2) ~= 0 && length(find(diff(V_2) ~= 0)) > 0

%Probe 1

t_2 = fromepoch(t_2);

ROS.I_RAW2 = I_2;

ROS.V_RAW2 = V_2;

ROS.TIME_RAW2 = t_2;

[V_2,I_2,t_2] = adjust_data(V_2,I_2,t_2); %adjusting the data

ROS.I_DAT2 = I_2;

ROS.V_DAT2 = V_2;

ROS.TIME2 = t_2;

%Setting some information

ROS.DUR2 = ROS.DAT_DUR2(i);

ROS.DAT_LENGTH2 = length(V_2);

ROS.MIN_Vb2 = min(V_2);

ROS.MAX_Vb2 = max(V_2);

test = diff(V_2);

if (test >= 0)

kind = 1;

else if (test <= 0)

kind = 2;

else if (ROS.V_RAW2(1) < 0)

kind = 3; %down up and up down

else

kind = 4;

end

end

B.2. HANDLING THE DATA 115

end

ind = (find(diff(V_2) ~= 0,15));

ROS.STEP_SIZE2 = test(ind(15));

ROS.KIND2 = kind; %Upp?t svep just nu

%Need to get rid of zero-contributions

%ROS.I_DAT

%indz = find(ROS.I_DAT == 0);

%ROS.I_DAT(indz) = NaN;

%ROS.V_DAT(indz) = NaN;

%ROS.TIME(indz,:) = NaN;

%Work on the data but only if model-box is checked

ROS.where2 = i;

dat2 = 1;

[PAR2,events_loaded,RVA_data] = gothrough(V_2,I_2,PAR2,ROS,handles,2);

else

if (handles.fb == 1 && handles.show_probe1 == 0)

i = i-1;

else

i = i+1;

end

end

end

end

B.2.2 adjust data.m

%adjust_data.m, This program cuts the data collected and sorts it

%in ascending order

%Input: Bias voltage (V), Current (I) and time (t)

%Output: Vc (the cut&sort voltage), Ic (the cut&sort current) and tc (the cut&sort time)

function [Va,Ia,ta] = adjust_data(V,I,t)

cut = 10;

Ic = I(find(V > cut,1):length(V)); %Cut the data

Vc = V(find(V > cut,1):length(V)); %everything under 5 V in start of

tc = t(find(V > cut,1):length(V),:); %the data set is cut

[Vs,ind] = sort(Vc); %Sort the data in ascending order

Is = Ic(ind); %We get an upward sweep

ts = tc(ind,:);

%Sort out the same V-measurements (4 every time) and take mean in current

ind = find(diff(Vs) ~= 0);

if length(ind) < 1

disp(’Could not adjust data, data stored in raw form’)

Ia = Is;

Va = Vs;

ta = ts;

return

end

116 APPENDIX B. THE SOFTWARE ROUTINES

Va = Vs(ind); %a is for adjust

k = 1;

for i = 1:length(ind)

Ia(i) = mean(Is(k:ind(i)));

k = ind(i)+1;

end

ta = ts(ind,:);

%Look if the current is saturated,if yes remove saturated part

ind = find(Ia < 9.60*1e-6); %9.8 from the start

Ia = Ia(ind)’;

Va = Va(ind);

ta = ta(ind,:);

B.2.3 remove dat.m

%remove_dat.m

%Lets the user remove the data that just messes up the fit

function [ROS,PAR] = remove_dat(handles)

ROS = handles.ROS;

PAR = handles.PAR;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Set up time and other information%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Vb = ROS.V_DAT;

Ib = ROS.I_DAT;

logI = PAR.I_log_abs;

dat_num = ROS.where;

t = ROS.TIME(1,:);

tim = ROS.TIME(:,:);

time = datestr(t);

time = datestr(time,31);

Vsc = PAR.Vsc;

again = 0; %again = 0 means to do the fit

%again = 1 means to stop fitting

axes(handles.output_text);

cla;

text(0.0,1.0,[’Pick a point on the log-curve (lower right curve)’],...

’FontSize’,12,’Color’,’green’);

text(0.0,0.5,[’No data-points to the right will be used in the fit.’],...

’FontSize’,12,’Color’,’green’);

while again == 0

axes(handles.coord3); %Log-curve in coord3

cla;

plot(Vb,logI,’k.’);

title([’Time: ’, time,’, Probe:’, ROS.SEN,’, Data #: ’,...

num2str(dat_num)])

xlabel(’Vb [V]’);

ylabel(’log(I)’);

grid on;

%%%%%%%%%%%%%%%%%%%%%

B.2. HANDLING THE DATA 117

%Find point on graph%

%%%%%%%%%%%%%%%%%%%%%

[x,y] = ginput(1);

point = x;

if x > 0

%%%%%%%%%%%%%%%%%%%%%%

%Find first datapoint%

%%%%%%%%%%%%%%%%%%%%%%

ind1 = find(Vb >= x,1);

%%%%%%%%%%%

%Plot line%

%%%%%%%%%%%

len = 1000; %How many points

point_x = linspace(x,x,len);

point_y = linspace(min(logI),max(logI),len);

hold on;

plot(point_x,point_y,’red’);

axes(handles.output_text);

cla;

text(0.0,1.0,[’Is the interval satisfactory? Yes = rmb, No = lmb’],...

’Color’,’green’,’FontSize’,12);

[X,Y,button] = ginput(1);

if button == 2 || button == 3

again = 1;

end

else

axes(handles.output_text);

cla;

text(0.0,1.0,[’The point must be to the right of Vb = 0’],...

’Color’,’green’,’FontSize’,12);

end

end

%%%%%%%%%%%%%

%Set outdata%

%%%%%%%%%%%%%

axes(handles.output_text);

cla;

ROS.I_DAT = [];

ROS.V_DAT = [];

ROS.TIME = [];

ROS.I_DAT = Ib(1:ind1);

ROS.V_DAT = Vb(1:ind1);

ROS.TIME = tim(1:ind1,:);

B.2.4 search dat.m

%SEARCH_DAT looks for data close to the specified date

%

% tim = search_dat(ROS,time,probe)

%

% ROS is needed to get the data

% time is the time the user has specified (in JD)

% probe is what probe is used (1 or 2)

%

% tim is the julian date of the index

% ind is the index for the data set

function [tim,ind] = search_dat(ROS,time,probe)

118 APPENDIX B. THE SOFTWARE ROUTINES

if (probe == 1)

data_time = datenum(ROS.DAT_CONT1(:,:));

else

data_time = datenum(ROS.DAT_CONT2(:,:));

end

ind = find(data_time(:,1) >= time,1,’first’);

tim = data_time(ind,1); %The JD

B.2.5 save data.m

%SAVE_DATA saves the data in the file named []

%

% save_data = save_data(handles,ROS,PAR,ref)

function save_data = save_data(handles,ROS,PAR,ref)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Create matrices for saving%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%First of all determine the model used

if (handles.fit_try_all == 0)

if (handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 0)

if (handles.fit_partial == 1)

model = 1;

else

model = 11;

end

end

if (handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 1)

if (handles.fit_partial == 1)

model = 2;

else

model = 21;

end

end

if (handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 0)

if (handles.fit_partial == 1)

model = 3;

else

model = 31;

end

end

if (handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 0 ...

&& handles.e_photo == 1)

if (handles.fit_partial == 1)

model = 4;

else

model = 41;

end

end

if (handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 0)

if (handles.fit_partial == 1)

model = 51;

else

B.2. HANDLING THE DATA 119

model = 5;

end

end

if (handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 1)

if (handles.fit_partial == 1)

model = 61;

else

model = 6;

end

end

if (handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 0 ...

&& handles.e_photo == 0)

if (handles.fit_partial == 1)

model = 71;

else

model = 7;

end

end

if (handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 0 ...

&& handles.e_photo == 1)

if (handles.fit_partial == 1)

model = 81;

else

model = 8;

end

end

else

model = PAR.parameters(15);

end

if ref == 1

len = size(ROS.TIME1,2);

time = ROS.TIME1(1,1:6); %Setting time

ltime = ROS.TIME1(len,6)-ROS.TIME1(1,6);

cs = PAR.CS; %Coordinate system

switch cs

case ’GSE’

cs = 1;

case ’GEI’

cs = 2;

case ’GEA’

cs = 3;

case ’HEI’

cs = 4;

case ’HEA’

cs = 5;

end

un = PAR.UNITS; %Units used

switch un

case ’km’

un = 1e3; %km

case ’AU’

un = 1e11; %Au

case ’Re’

un = 6371.2*1e3; %Re

case ’Rm’

un = 3397*1e3; %Rm

end

x = PAR.R(1)*un;

y = PAR.R(2)*un;

z = PAR.R(3)*un;

120 APPENDIX B. THE SOFTWARE ROUTINES

vx = PAR.V(1)*un;

vy = PAR.V(2)*un;

vz = PAR.V(3)*un;

phi = PAR.Sphi;

theta = PAR.Stheta;

rho = PAR.Srho;

vphi = PAR.Vphi;

vtheta = PAR.Vtheta;

vrho = PAR.Vrho;

probe = ref;

kind = ROS.KIND1;

minVb = ROS.MIN_Vb1;

maxVb = ROS.MAX_Vb1;

ssize = ROS.STEP_SIZE1;

nrpoints = ROS.DAT_LENGTH1;

else

len = size(ROS.TIME2,2);

time = ROS.TIME2(1,1:6); %Setting time

ltime = ROS.TIME2(len,6)-ROS.TIME2(1,6);

cs = PAR.CS;

switch cs

case ’GSE’

cs = 1;

case ’GEI’

cs = 2;

case ’GEA’

cs = 3;

case ’HEI’

cs = 4;

case ’HEA’

cs = 5;

end

un = PAR.UNITS; %Units used

switch un

case ’km’

un = 1e3; %km

case ’AU’

un = 1e11; %Au

case ’Re’

un = 6371.2*1e3; %Re

case ’Rm’

un = 3397*1e3; %Rm

end

x = PAR.R(1)*un;

y = PAR.R(2)*un;

z = PAR.R(3)*un;

vx = PAR.V(1)*un;

vy = PAR.V(2)*un;

vz = PAR.V(3)*un;

phi = PAR.Sphi;

theta = PAR.Stheta;

rho = PAR.Srho;

vphi = PAR.Vphi;

vtheta = PAR.Vtheta;

vrho = PAR.Vrho;

probe = ref;

kind = ROS.KIND2;

minVb = ROS.MIN_Vb2;

maxVb = ROS.MAX_Vb2;

ssize = ROS.STEP_SIZE2;

nrpoints = ROS.DAT_LENGTH2;

end

B.3. SETTING THE POSITION AND VELOCITY 121

%Create the matrix and save in it

Sav1(1,1:6) = time;

Sav1(1,7) = cs;

Sav1(1,8:10) = [x y z];

Sav1(1,11:13) = [vx vy vz];

if (length([phi theta rho vphi vtheta vrho]) == 0)

Sav1(1,14:19) = 0;

else

Sav1(1,14:19) = [phi theta rho vphi vtheta vrho];

end

Sav1(1,20) = probe;

Sav1(1,21) = kind;

Sav1(1,22) = minVb;

Sav1(1,23) = maxVb;

Sav1(1,24) = ssize;

Sav1(1,25) = nrpoints;

Sav1(1,26) = ltime;

%The fits also

if (length(PAR.parameters ~= 0));

parameters = PAR.parameters;

Sav1(1,27:36) = parameters(5:14);

Sav1(1,37) = model;

end

a = 38;

if (length(PAR.pars) ~= 0)

pars = PAR.pars;

for i = 1:9

Sav1(1,a:a+10) = pars(i,5:15); %Parameters and model choice

Sav1(1,a+11) = NaN; %To separate models

a = a+12;

end

else

Sav1(1,38:145) = 0; %To get same size

end

%Get file and dir, then save

cd save/ %Jumping to data directory

time = datestr(time,30);

filename = [’Save_probe’,num2str(probe)];

save(filename,’Sav1’,’-ASCII’,’-APPEND’);

%Give output text

axes(handles.output_text);

cla;

text(0.0,0.5,[’Data saved’], ’Color’, ’green’,’FontSize’,16);

pause(0.5)

cla;

%Move back to original directory

cd ..

B.3 Setting the position and velocity

B.3.1 set r v.m

%SET_R_V provides the position, speed, velocity and attitude of Rosetta

122 APPENDIX B. THE SOFTWARE ROUTINES

% for the chosen coordinate system

%

% [par_out,events_loaded,RVA_data] = set_r_v(time,handles)

%

% Some lines taken from Magnus Billvik

function [par_out,events_loaded,RVA_data] = set_r_v(time,handles)

par_out = {};

att = handles.show_att;

pos = handles.show_posvel;

fit = handles.fit;

inc = 23.439291*pi/180; %Earths inclination in radians

system = handles.system_choice;

unit = handles.unit_choice;

events_loaded = handles.events_loaded;

RVA_data = handles.RVA_data;

co_syst = ’HEI’; %Default coordinate system

un = ’km’; %Default units used

%First get the raw data

[rr,vr,rs_gea,re_hea,ve_hea,Asc_gei,events_loaded,event,RVA_data] = ...

get_traj(time,inc,att,events_loaded,RVA_data);

%Do some transforms

if re_hea ~= 0

re_hei = gea2gei(re_hea,inc);

ve_hei = gea2gei(ve_hea,inc);

end

%check event

if event <= 4

rr_gei = rr;

vr_gei = vr;

else

rr_hei = rr;

vr_hei = vr;

rr_hea = gei2gea(rr_hei,inc);

vr_hea = gei2gea(vr_hei,inc);

rr_gei = hei2gei(rr_hei,re_hei);

vr_gei = hei2gei(vr_hei,ve_hei);

end

%Now transform to desired coordinate system

switch system

case 1 %gse

rr_gea = gei2gea(rr_gei,inc);

vr_gea = gei2gea(vr_gei,inc);

rr_gse = gea2gse(rr_gea,rs_gea);

vr_gse = gea2gse(vr_gea,rs_gea);

%abs_rr_gse = sqrt(rr_gse(1)^2+rr_gse(2)^2+rr_gse(3)^2)

rr = rr_gse;

vr = vr_gse;

co_syst = ’GSE’;

case 2 %gei

rr = rr_gei;

vr = vr_gei;

co_syst = ’GEI’;

case 3 %gea

rr_gea = gei2gea(rr_gei,inc);

vr_gea = gei2gea(vr_gei,inc);

rr = rr_gea;

B.3. SETTING THE POSITION AND VELOCITY 123

vr = vr_gea;

co_syst = ’GEA’;

case 4 %hei

rr = rr_hei;

vr = vr_hei;

co_syst = ’HEI’;

case 5 %hea

rr_hea = gei2gea(rr_hei,inc);

vr_hea = gei2gea(vr_hei,inc);

rr = rr_hea;

vr = vr_hea;

co_syst = ’HEA’;

end

%Set attitude

if att == 1

number = size(rr,2);

Asc_gea(1,:) = gei2gea_a(Asc_gei(1,:),inc);

Asc_gea(2,:) = gei2gea_a(Asc_gei(2,:),inc);

Asc_gea(3,:) = gei2gea_a(Asc_gei(3,:),inc);

Asc_gse(1,:) = gea2gse_a(Asc_gea(1,:),rs_gea);

Asc_gse(2,:) = gea2gse_a(Asc_gea(2,:),rs_gea);

Asc_gse(3,:) = gea2gse_a(Asc_gea(3,:),rs_gea);

Asc = Asc_gse;

% HEA(J2000) to ROS

rs_ros=zeros(3,number);

if event <= 4

% translation and rotation to rosetta’s ref. frame

% by def. Asc_gea(:,:,i) is the rotation matrix from GEA to ROS

for i=1:number

vr_ros(:,i)=Asc_gea(:,:,i)*vr_gea(:,i);

rs_ros(:,i)=Asc_gea(:,:,i)*(rs_gea(:,i)-rr_gea(:,i)); % sun’s position

end

else

for i=1:number

vr_ros(:,i)=Asc_gea(:,:,i)*vr_hea(:,i);

rs_ros(:,i)=Asc_gea(:,:,i)*(-rr_hea(:,i));

end

end

% ROS(x,y,z) to ROS(rho, phi, theta in km and degrees resp.)

disp(’- ros (xyz) -> ros (rho,phi,theta)’);

sphi=zeros(1,number); % declare the variables to speed up the loop!

stheta=zeros(1,number);

srho=zeros(1,number);

vphi=zeros(1,number);

vtheta=zeros(1,number);

vrho=zeros(1,number);

for i=1:number

[sphi(i), stheta(i), srho(i)]=cart2sphere(rs_ros(1,i), rs_ros(2,i), rs_ros(3,i));

[vphi(i), vtheta(i), vrho(i)]=cart2sphere(vr_ros(1,i), vr_ros(2,i), vr_ros(3,i));

end

sphi=sphi*180/pi; %elevation

vphi=vphi*180/pi;

stheta=stheta*180/pi; %azimuth

vtheta=vtheta*180/pi;

srho;

vrho;

end

%Set the units used

switch unit

124 APPENDIX B. THE SOFTWARE ROUTINES

case 1 %Re

rr = rr./(6371.2); %Re = 6371.2 km

vr = vr./(6371.2);

un = ’Re’;

case 2 %Rm

rr = rr./(3397); %Rm = 3397 km

vr = vr./(3397);

un = ’Rm’;

case 3 %Au

rr = rr./(1.495978*1e8); %1 AU = 1.495978*1e11 m

vr = vr./(1.495978*1e8);

un = ’Au’;

end %km = km

%Set output

if (pos == 1 || fit == 1)

par_out{1} = rr;

par_out{2} = vr;

end

if att == 1

par_out{3} = sphi;

par_out{4} = vphi;

par_out{5} = stheta;

par_out{6} = vtheta;

par_out{7} = srho;

par_out{8} = vrho;

end

par_out{9} = co_syst; %system and unit

par_out{10} = un;

B.3.2 get traj.m

%GET_TRAJ provides the HEI coordinates of Rosetta for the given time, taken

% from the raw trajectory data file. (HEI = heliocentric equatorial

% inertial)

%

% [rr,vr,rs_gea,re_hea,ve_hea,Asc_gei,loaded,event,RVA_data] = ...

% get_traj(time,inc,att,loaded,RVA_data)

function [rr,vr,rs_gea,re_hea,ve_hea,Asc_gei,loaded,event,RVA_data] = ...

get_traj(time,inc,att,loaded,RVA_data)

timediff = datenum([-4713 1 1 12 0 0])+327;

startdate = [2000 1 1 0 0 0]’;

enddate = [2020 1 1 0 0 0]’;

event = 5;

Asc_gei = 0; %just in case no attitude

rs_gea = 0;

re_hea = 0;

ve_hea = 0;

%%%

%Look to see if the time is inside a special event%

%%%

if (datenum(time) >= 7.323734006942118e+05 && datenum(time) <= 7.323784587248912e+05)

disp(’Earth flyby #1, 2005’)

event = 1;

if loaded(1,1) == 0

loaded(1,1) = 1;

[RR, VR, dater] = readros(’traj_r_e1.txt’, startdate, enddate); %RR in GEI

[RS, dates, jds] = readjpltraj(’traj_s_e1.txt’); %RS in GEI

B.3. SETTING THE POSITION AND VELOCITY 125

RVA_data.RR1 = RR;

RVA_data.VR1 = VR;

RVA_data.dater1 = dater;

RVA_data.RS1 = RS;

RVA_data.dates1 = dates;

RVA_data.jds1 = jds;

else

disp(’Data already loaded’)

RR = RVA_data.RR1;

VR = RVA_data.VR1;

dater = RVA_data.dater1;

RS = RVA_data.RS1;

dates = RVA_data.dates1;

jds = RVA_data.jds1;

end

if att == 1

if loaded(1,2) == 0

disp(’Getting attitude’)

loaded(1,2) = 1; %shows that attitude is also loaded

[Q, datea] = readatt(’attitude.txt’, dater(:,1), dater(:,length(dater)));

RVA_data.Q1 = Q;

RVA_data.datea1 = datea;

else if loaded(1,2) == 1

disp(’Attitude already loaded’)

Q = RVA_data.Q1;

datea = RVA_data.datea1;

end

end

end

end

if (datenum(time) >= 7.333587520354936e+05 && datenum(time) <= 7.333609954703673e+05)

disp(’Earth flyby #2, 2007’)

event = 2;

if loaded(2,1) == 0

loaded(2,1) = 1;

[RR, VR, dater] = readros(’traj_r_e2.txt’, startdate, enddate);

[RS, dates, jds] = readjpltraj(’traj_s_e2.txt’);

RVA_data.RR2 = RR;

RVA_data.VR2 = VR;

RVA_data.dater2 = dater;

RVA_data.RS2 = RS;

RVA_data.dates2 = dates;

RVA_data.jds2 = jds;

%[RMo, datem, jdmo] = readjpltraj(’traj_m_e2.txt’);

else

disp(’Data already loaded’)

RR = RVA_data.RR2;

VR = RVA_data.VR2;

dater = RVA_data.dater2;

RS = RVA_data.RS2;

dates = RVA_data.dates2;

jds = RVA_data.jds2;

end

if att == 1

if loaded(2,2) == 0

loaded(2,2) = 1;

disp(’Getting attitude’)

[Q, datea] = readatt(’attitude.txt’, dater(:,1), dater(:,length(dater)));

RVA_data.Q2 = Q;

RVA_data.datea2 = datea;

else if loaded(2,1) == 1

disp(’Attitude already loaded’)

126 APPENDIX B. THE SOFTWARE ROUTINES

Q = RVA_data.Q2;

datea = RVA_data.datea2;

end

end

end

end

if (datenum(time) >= 7.340891972105330e+05 && datenum(time) <= 7.340914353604476e+05)

disp(’Earth flyby #3, 2009’)

event = 3;

if loaded(3,1) == 0

loaded(3,1) = 1;

[RR, VR, dater] = readros(’traj_r_e3.txt’, startdate, enddate);

[RS, dates, jds] = readjpltraj(’traj_s_e3.txt’);

RVA_data.RR3 = RR;

RVA_data.VR3 = VR;

RVA_data.dater3 = dater;

RVA_data.RS3 = RS;

RVA_data.dates3 = dates;

RVA_data.jds3 = jds;

%[RMo, datem, jdmo] = readjpltraj(’traj_m_e2.txt’);

else

disp(’Data already loaded’)

RR = RVA_data.RR3;

VR = RVA_data.VR3;

dater = RVA_data.dater3;

RS = RVA_data.RS3;

dates = RVA_data.dates3;

jds = RVA_data.jds3;

end

if att == 1

if loaded(3,2) == 0

loaded(3,2) = 1;

disp(’Getting attitude’)

[Q, datea] = readatt(’attitude.txt’, dater(:,1), dater(:,length(dater)));

RVA_data.Q3 = Q;

RVA_data.datea3 = datea;

else if loaded(3,2) == 1

disp(’Attitude already loaded’)

Q = RVA_data.Q3;

datea = RVA_data.datea3;

end

end

end

end

if (datenum(time) >= 7.330973250541261e+05 && datenum(time) <= 7.330988350641347e+05)

disp(’Mars flyby #1, 2007’)

event = 4;

if loaded(4,1) == 0

loaded(4,1) = 1;

[RR, VR, dater] = readros(’traj_r_m20051019.txt’, startdate, enddate);

[RS, dates, jds] = readjpltraj(’suntest.txt’);

RVA_data.RR4 = RR;

RVA_data.VR4 = VR;

RVA_data.dater4 = dater;

RVA_data.RS4 = RS;

RVA_data.dates4 = dates;

RVA_data.jds4 = jds;

%%% H?R SKALL KANSKE PHOBOS OCH DEIMOS MED SEN

%[RMo, datem, jdmo] = readjpltraj(’traj_m_e2.txt’);

else

disp(’Data already loaded’)

RR = RVA_data.RR4;

B.3. SETTING THE POSITION AND VELOCITY 127

VR = RVA_data.VR4;

dater = RVA_data.dater4;

RS = RVA_data.RS4;

dates = RVA_data.dates4;

jds = RVA_data.jds4;

end

if att == 1

if loaded(4,2) == 0

loaded(4,2) = 1;

disp(’Getting attitude’)

[Q, datea] = readatt(’attitude.txt’, dater(:,1), dater(:,length(dater)));

RVA_data.Q4 = Q;

RVA_data.datea4 = datea;

else if loaded(4,2) == 1

disp(’Attitude already loaded’)

Q = RVA_data.Q4;

datea = RVA_data.datea4;

end

end

end

end

if event == 5;

disp(’Whole mission, THE NUMBERS GIVEN CAN NOW BE WRONG ~ 1500 km!’)

if (loaded(5,1) == 0 || loaded(5,3) == 0)

if (datenum(time) >= 2453279.501388889+timediff && datenum(time) <= 2453310.498611111+timediff)

if loaded(5,1) == 0

[RR, VR, dater] = readros(’traj_r_whole.txt’, startdate, enddate);

loaded(5,1) = 1;

else

RR = RVA_data.RR5;

VR = RVA_data.VR5;

dater = RVA_data.dater5;

end

disp(’Probably LAP dance, loading october data’)

[RE, datee, jde] = readjpltraj(’traj_dat/traj_e_OCT_2004.txt’);

[VE, deteve, jdve] = readjpltraj(’traj_dat/vel_e_OCT_2004.txt’);

[RS, dates, jds] = readjpltraj(’traj_dat/traj_s_OCT_2004.txt’);

loaded(5,3) = 1;

RVA_data.RR5 = RR;

RVA_data.VR5 = VR;

RVA_data.dater5 = dater;

RVA_data.RS5 = RS;

RVA_data.dates5 = dates;

RVA_data.jds5 = jds;

RVA_data.RE5 = RE;

RVA_data.jde5 = jde;

RVA_data.VE5 = VE;

RVA_data.jdve5 = jdve;

else if loaded(5,1) == 0

loaded(5,1) = 1;

[RR, VR, dater] = readros(’traj_r_whole.txt’, startdate, enddate);

[RE, datee, jde] = readjpltraj(’traj_e_whole.txt’);

[VE, deteve, jdve] = readjpltraj(’vel_e_whole.txt’);

[RS, dates, jds] = readjpltraj(’traj_s_whole.txt’);

RVA_data.RR5 = RR;

RVA_data.VR5 = VR;

RVA_data.dater5 = dater;

RVA_data.RS5 = RS;

RVA_data.dates5 = dates;

RVA_data.jds5 = jds;

RVA_data.RE5 = RE;

128 APPENDIX B. THE SOFTWARE ROUTINES

RVA_data.jde5 = jde;

RVA_data.VE5 = VE;

RVA_data.jdve5 = jdve;

else if (loaded(5,3) == 0)

disp(’Data already loaded’)

RR = RVA_data.RR5;

VR = RVA_data.VR5;

dater = RVA_data.dater5;

RS = RVA_data.RS5;

dates = RVA_data.dates5;

jds = RVA_data.jds5;

RE = RVA_data.RE5;

jde = RVA_data.jde5;

VE = RVA_data.VE5;

jdve = RVA_data.jdve5;

end

end

end

else

disp(’Data already loaded’)

RR = RVA_data.RR5;

VR = RVA_data.VR5;

dater = RVA_data.dater5;

RS = RVA_data.RS5;

dates = RVA_data.dates5;

jds = RVA_data.jds5;

RE = RVA_data.RE5;

jde = RVA_data.jde5;

VE = RVA_data.VE5;

jdve = RVA_data.jdve5;

end

if att == 1

disp(’Getting attitude’)

start = time - [0 0 1 0 0 0];

stop = time + [0 0 1 0 0 0];

[Q, datea] = readatt(’attitude.txt’, start’, stop’);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%

%Convert to Julian Date%

%%%%%%%%%%%%%%%%%%%%%%%%

jdr = datenum(dater(1,:),dater(2,:),dater(3,:),...

dater(4,:),dater(5,:),dater(6,:));

jd = datenum(time);

jds = jds + timediff;

if event == 5

jde = jde + timediff;

jdve = jdve + timediff;

end

%%

%Interpolation is needed to get the exact point%

%%

if event <= 4

rr_gei(1,:) = interp1(jdr,RR(1,:),jd);

rr_gei(2,:) = interp1(jdr,RR(2,:),jd);

rr_gei(3,:) = interp1(jdr,RR(3,:),jd);

vr_gei(1,:) = interp1(jdr,VR(1,:),jd);

vr_gei(2,:) = interp1(jdr,VR(2,:),jd);

vr_gei(3,:) = interp1(jdr,VR(3,:),jd);

rr = rr_gei; %for output

vr = vr_gei; %this is just for output

rs_gea(1,:) = interp1(jds,RS(1,:),jd);

B.3. SETTING THE POSITION AND VELOCITY 129

rs_gea(2,:) = interp1(jds,RS(2,:),jd);

rs_gea(3,:) = interp1(jds,RS(3,:),jd);

else

rr_hei(1,:) = interp1(jdr,RR(1,:),jd);

rr_hei(2,:) = interp1(jdr,RR(2,:),jd);

rr_hei(3,:) = interp1(jdr,RR(3,:),jd);

vr_hei(1,:) = interp1(jdr,VR(1,:),jd);

vr_hei(2,:) = interp1(jdr,VR(2,:),jd);

vr_hei(3,:) = interp1(jdr,VR(3,:),jd);

rr = rr_hei; %for output

vr = vr_hei; %this is just for output

re_hea(1,:) = interp1(jde,RE(1,:),jd);

re_hea(2,:) = interp1(jde,RE(2,:),jd);

re_hea(3,:) = interp1(jde,RE(3,:),jd);

ve_hea(1,:) = interp1(jde,VE(1,:),jd);

ve_hea(2,:) = interp1(jde,VE(2,:),jd);

ve_hea(3,:) = interp1(jde,VE(3,:),jd);

rs_gea(1,:) = interp1(jds,RS(1,:),jd);

rs_gea(2,:) = interp1(jds,RS(2,:),jd);

rs_gea(3,:) = interp1(jds,RS(3,:),jd);

end

if att == 1

jda_tmp = datenum(datea(1,:),datea(2,:),datea(3,:),datea(4,:),datea(5,:),datea(6,:));

Q_mod(:,1)=Q(:,1);

jda(1)=jda_tmp(1);

j=2;

for i=2:length(jda_tmp)

jda(j)=jda_tmp(i);

Q_mod(:,j)=Q(:,i);

if jda(j)==jda(j-1)

j=j-1;

end

j=j+1;

end

clear jda_temp;

%%%%%%%%%%%%%%%

%Interpolate Q%

%%%%%%%%%%%%%%%

q1 = interp1(jda,Q_mod(1,:),jd);

q2 = interp1(jda,Q_mod(2,:),jd);

q3 = interp1(jda,Q_mod(3,:),jd);

q4 = interp1(jda,Q_mod(4,:),jd);

% Define rosettas attitude vectors (from the quaternions) in GEI frame of referece for all times (3d matrix),

% the Rosetta inertial x,y,z axis being the rows of Asc

% Formula for converting quaternions to attitude vectors are taken from the ESA document file:

% RO-ESC-IF-5003_2_0_DDID_Appendix_H_Data_Delivery_FD_Products_2003Oct2

% 3.pdf

Asc_gei(1,1:3) = [q1^2-q2^2-q3^2+q4^2 2*(q1*q2+q3*q4) 2*(q1*q3-q2*q4)];

Asc_gei(2,1:3) = [2*(q1*q2-q3*q4) -q1^2+q2^2-q3^2+q4^2 2*(q2*q3+q1*q4)];

Asc_gei(3,1:3) = [2*(q1*q3+q2*q4) 2*(q2*q3-q1*q4) -q1^2-q2^2+q3^2+q4^2];

jd=jda; % define the time from the attitude data

end

130 APPENDIX B. THE SOFTWARE ROUTINES

B.4 Fitting routines

B.4.1 extraction.m

%EXTRACTION determines the different physical parameters that fits the data

% given. The parameters are returned in a field structure

% containing the parameters obtained by various ways of fitting

%

% [ppar,fit,currents,epop,fits,pars,parameters] = ...

% extraction(Vb,I,handles,phi,probe)

function [ppar,fit,currents,epop,fits,pars,parameters] = ...

extraction(Vb,I,handles,phi,probe)

ppar = [];

fit = [];

currents = [];

epop = [];

lenV = length(Vb);

lenI = length(I);

if lenV == lenI

%Start the fitting procedure

[parameters,fit,pars,fits] = fitting2(Vb,I,handles,phi,probe);

if (length(parameters) == 0 || length(fit) == 0) %corrupt data

ppar = zeros(16,0);

fit = zeros(2,1:length(Vb));

currents = zeros(3,1:length(Vb));

epop = 0;

return;

end

%Get the physical parameters and the constituent currents

V = linspace(min(Vb),max(Vb),1000);

if (handles.fit_try_all == 1)

if (parameters(15) == 5 || parameters(15) == 6 || ...

parameters(15) == 7 || parameters(15) == 8)

ppar = par2phys2(parameters,handles,2);

[Iph,Ii,Ie_p,Ie_sc] = get_I_parts(parameters,V,handles);

currents{1} = Iph;

currents{2} = Ii;

currents{3} = Ie_p;

currents{4} = Ie_sc;

epop = 2

else

ppar = par2phys2(parameters,handles,1);

[Iph,Ii,Ie_p] = get_I_parts(parameters,V,handles);

currents{1} = Iph;

currents{2} = Ii;

currents{3} = Ie_p;

epop = 1;

end

else

if (handles.e_sc ~= 1) %one e-pop

ppar = par2phys2(parameters,handles,1);

[Iph,Ii,Ie_p] = get_I_parts(parameters,V,handles);

currents{1} = Iph;

currents{2} = Ii;

B.4. FITTING ROUTINES 131

currents{3} = Ie_p;

epop = 1;

else

ppar = par2phys2(parameters,handles,2);

[Iph,Ii,Ie_p,Ie_sc] = get_I_parts(parameters,V,handles);

currents{1} = Iph;

currents{2} = Ii;

currents{3} = Ie_p;

currents{4} = Ie_sc;

epop = 2

end

end

end

B.4.2 fitting2.m

%FITTING2 is the main program that coordinates all the different steps in

% the fitting procedure.

%

% [parameters,fit,pars,fits] = fitting2(Vb,I,handles,phi,probe)

function [parameter,fit,pars,fits] = fitting2(Vb,I,handles,phi,probe)

parameter = [];

fit = [];

pars = [];

fits = [];

%Turning off warnings

warning off MATLAB:divideByZero

warning off MATLAB:nearlySingularMatrix

%Setting some by hand, now I use the values for probe 2

Iph01 = 64e-9;

Iph02 = 6e-9;

Tph1 = 1.2;

Tph2 = 7.1;

%An initial determination of some parameters is made

dat_out = preliminaries(Vb,I);

if (length(dat_out) == 0) %If data is strange

return;

end

b = dat_out(2);

c = dat_out(3);

d = dat_out(4);

z = dat_out(7);

if (handles.Vsc_manual == 1) %Use manually set Vsc

if (probe == 1)

Vsc = handles.PAR1.Vsc;

else

Vsc = handles.PAR2.Vsc;

end

else

Vsc = dat_out(5);

132 APPENDIX B. THE SOFTWARE ROUTINES

end

if (handles.e_photo == 1) %Photocurrent or not

f = dat_out(6);

else

f = 0;

end

a = dat_out(1)-f*(Iph01+Iph02);

if (a > 0) %a must be negative

a = -1e-9;

end

if (handles.e_sc == 1) %sc-photoelectrons used

k = dat_out(8);

k_g = min([k*0.5 5e-9]); %This is the k used for g

k_c = k-k_g; %The k used for c

h = 1/1.2; %1.2 eV starting guess

g = k_g*(1/h); %Ie02

d = 1/1; %1 eV pop. 1

c = k_c*(1/d);

else

g = 0;

h = 0;

end

ph_par = [Iph01 Iph02 Tph1 Tph2];

if (handles.fit_try_all == 0) %A user specified fit

par = [Iph01 Iph02 Tph1 Tph2 a b c d g h Vsc f z];

[parameter,fit] = fit_data2(Vb,I,par,handles);

else %Fit all combinations

%First fit ram ions and plasmaelectrons (A)

c = dat_out(3);

d = dat_out(4);

g = 0;

h = 0;

par = [Iph01 Iph02 Tph1 Tph2 a b c d g h Vsc f z];

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 1; %fit partial data (one e-pop)

[par1,fit1] = fit_data2(Vb,I,par,handles);

par1(15) = 1; %This designates what kind of model 1 = A

%Now fit ram ions, plasma- and photoelectrons (B)

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 1; %fit partial data (one e-pop)

[par2,fit2] = fit_data2(Vb,I,par,handles);

par2(15) = 2; %This designates what kind of model 2 = B

B.4. FITTING ROUTINES 133

%Using values from (A) and (B) we now determine (C)-(F)

para = par1(1:13);

para2(1:6) = par1(1:6);

para2(7) = 0; %c

para2(8) = 1/1; %d

para2(9) = par1(7)*(1+par1(8)*par1(11)); %c,d --> g, g = c(1+dVsc)

para2(10) = par1(8)/(1+par1(8)*par1(11)); %d --> h, h = d/(1+dVsc)

para2(11:13) = par1(11:13);

parb = par2(1:13);

parb2(1:6) = par2(1:6);

parb2(7) = 0; %c

parb2(8) = 1; %d

parb2(9) = par2(7)*(1+par2(8)*par2(11)); %c,d --> g, g = c(1+dVsc)

parb2(10) = par2(8)/(1+par2(8)*par2(11)); %d --> h, h = d/(1+dVsc)

parb2(11:13) = par2(11:13);

%Fit therm ions and plasmaelectrons (C)

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 1; %fit partial data (one e-pop)

[par3,fit3] = fit_data2(Vb,I,para,handles);

par3(15) = 3; %This designates what kind of model 3 = C

%Fit therm ions, plasma- and photoelectrons (D)

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 1; %fit partial data (one e-pop)

[par4,fit4] = fit_data2(Vb,I,parb,handles);

par4(15) = 4; %This designates what kind of model 4 = D

%Fit ram ions, plasma- and scphotoelectrons (E)

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 0; %fit all data points (two e-pops)

[par5,fit5] = fit_data2(Vb,I,para2,handles);

par5(15) = 5; %This designates what kind of model 5 = E

%Fit ram ions, plasma-, scphoto- and photoelectrons (F)

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 0; %fit all data points (two e-pops)

134 APPENDIX B. THE SOFTWARE ROUTINES

[par6,fit6] = fit_data2(Vb,I,parb2,handles);

par6(15) = 6; %This designates what kind of model 6 = F

%Now using (C)-(F) fit (G) and (H)

parc(1:6) = par3(1:6);

parc(7) = 0; %c

parc(8) = 1; %d

parc(9) = par3(7)*(1+par3(8)*par3(11)); %c,d --> g, g = c(1+dVsc)

parc(10) = par3(8)/(1+par3(8)*par3(11)); %d --> h, h = d/(1+dVsc)

parc(11:13) = par3(11:13);

pard(1:6) = par4(1:6);

pard(7) = 0; %c

pard(8) = 1; %d

pard(9) = par4(7)*(1+par4(8)*par4(11)); %c,d --> g, g = c(1+dVsc)

pard(10) = par4(8)/(1+par4(8)*par4(11)); %d --> h, h = d/(1+dVsc)

pard(11:13) = par4(11:13);

pare(1:6) = par5(1:6);

pare(7) = 0; %c

pare(8) = 1; %d

pare(9) = par5(7)*(1+par5(8)*par5(11)); %c,d --> g, g = c(1+dVsc)

pare(10) = par5(8)/(1+par5(8)*par5(11)); %d --> h, h = d/(1+dVsc)

pare(11:13) = par5(11:13);

parf(1:6) = par6(1:6);

parf(7) = 0; %c

parf(8) = 1; %d

parf(9) = par6(7)*(1+par6(8)*par6(11)); %c,d --> g, g = c(1+dVsc)

parf(10) = par6(8)/(1+par6(8)*par6(11)); %d --> h, h = d/(1+dVsc)

parf(11:13) = par6(11:13);

%Fit therm ions, plasma- and scphotoelectrons (G)

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 0; %fit all data points (two e-pops)

[par7,fit7] = fit_data2(Vb,I,parc,handles); %using values from c

[par8,fit8] = fit_data2(Vb,I,pare,handles); %using values from e

par7(15) = 7; %This designates what kind of model 7 = G

par8(15) = 7; %This designates what kind of model 7 = G

%Fit therm ions, plasma-, scphoto- and photoelectrons (H)

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 0; %fit all data points (two e-pops)

[par9,fit9] = fit_data2(Vb,I,pard,handles); %using values from d

[par10,fit10] = fit_data2(Vb,I,parf,handles); %using values from f

par9(15) = 8; %This designates what kind of model 8 = H

par10(15) = 8; %This designates what kind of model 8 = H

B.4. FITTING ROUTINES 135

%Now we can compare the different models and see which is best

err = [par1(14),par2(14),par3(14),par4(14),par5(14),...

par6(14),par7(14),par8(14),par9(14),par10(14)];

fits = [fit1(2,:);fit2(2,:);fit3(2,:);fit4(2,:);fit5(2,:);...

fit6(2,:);fit7(2,:);fit8(2,:);fit9(2,:);fit10(2,:)];

pars = [par1;par2;par3;par4;par5;par6;par7;par8;par9;par10];

[fit_t,parameter] = choose_fit(Vb,I,fits,pars,err);

stl = 10*length(Vb);

V_fit = linspace(min(Vb),max(Vb),stl);

fit(1,:) = V_fit;

fit(2,:) = fit_t;

end

B.4.3 preliminaries.m

%PRELIMINARIES is a function that should be used in the start of the

% fitting procedure. It calculates starting values of some of

% the parameters, as well as Vsc, z and other usables

%

% [dat_out] = preliminaries(Vb,I)

function [dat_out] = preliminaries(Vb,I)

dat_out = [];

lV = length(Vb);

lI = length(I);

if lV == lI

%HERE THE LEAK SHOULD BE SUBTRACTED... PERHAPS

z = zero_cross(Vb,I); %determine zero-crossing

if (length(z) == 0)

disp(’Data possibly corrupt, ending fit’)

return;

end

f = -1; %This must be fixed

[Vsc1,Vsc2,Vsc3] = find_scpot(Vb,I,z); %determine Vsc

if (Vsc1+z < -4) %Vsc should be in

Vsc = -z; %vicinity of z

else

Vsc = Vsc1;

end

%Now Ie0 and Te will be determined

[Ie0,Te,k,Vsc] = fit_single_e(Vb,I,Vsc);

c = Ie0;

d = 1/Te;

%Setting b and a (a is used if the probe is in eclipse)

Vp = Vsc + Vb;

len = length(Vp);

len2 = length(find(Vp < 0));

136 APPENDIX B. THE SOFTWARE ROUTINES

V = Vp(1:(floor(len2*0.5))); %50 percent of the negative probe sweep

I = I(1:(floor(len2*0.5)));

P = polyfit(V,I,1); %fitting straight line

b = P(1);

a = P(2);

%Set the output

dat_out(1) = a;

dat_out(2) = b;

dat_out(3) = c;

dat_out(4) = d;

dat_out(5) = Vsc;

dat_out(6) = f;

dat_out(7) = z;

dat_out(8) = k;

end

B.4.4 zero cross.m

%ZERO_CROSS determines the zero crossing of the current (i.e. I = 0)

%

% z = zero_cross(Vb,I)

function z = zero_cross(Vb,I)

lenV = length(Vb);

lenI = length(I);

z = 0;

if lenV ~= lenI

disp(’Vb and I need to be same length’)

return;

end

%%

%Find datapoints lower and higher than zero, the following is Reine Gills%

%code (unless otherwise stated) %

%%

lt = find(I < 0);

gt = find(I > 0);

Dlt = [Vb(lt), I(lt)]; %Data with current lower than zero

Dgt = [Vb(gt), I(gt)]; %Data with current higher than zero

if(~isempty(Dlt) && ~isempty(Dgt))

Dlt=sortrows(Dlt,2); % Sort by current

Dlt=flipud(Dlt);

% Select atmost the 4 lowest curr. values and sort by bias

ui=size(Dlt,1);

if(ui>4)

ui=4;

end

Dlt=sortrows(Dlt(1:ui,:),1);

Dlt=flipud(Dlt);

% At this point the first row in Dlt is a data point with

% high probability to be close and to the left of the rightmost

% zero crossing..second value has lower probability and so on

Dgt=sortrows(Dgt,2); % Sort by current

% Select atmost the 4 lowest

B.4. FITTING ROUTINES 137

% curr. values and sort by bias

ui=size(Dgt,1);

if(ui>4)

ui=4;

end

Dgt=sortrows(Dgt(1:ui,:),1);

% At this point the first row in Dlt is a data point with

% high probability to be close and to the right of the rightmost

% zero crossing..second value has lower probability and so on

% Use most probable points draw a line between them

% and return bias at zero current

vp=Dgt(1,1);

ip=Dgt(1,2);

vn=Dlt(1,1);

in=Dlt(1,2);

z=vp-ip*(vp-vn)./(ip-in);

else

disp(’Error, all data above or below zero!’);

z = [];

end

B.4.5 moving average.m

%MOVING_AVERAGE calculates a pointvalue at each point, based on the average

% of its 8 neighbouring points, symmetrically. The

% endpoints are calculated by neighbours back and

% forth respectively.

%

% y_av = moving_average(x,y)

function y_av = moving_average(x,y)

y_av = [];

lx = length(x);

ly = length(y);

if (lx == ly) %must be same lengths

%for first points a forward average is taken

y_av(1) = (y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+y(8)+y(9))/9;

y_av(2) = (y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+y(8)+y(9)+y(10))/9;

y_av(3) = (y(3)+y(4)+y(5)+y(6)+y(7)+y(8)+y(9)+y(10)+y(11))/9;

y_av(4) = (y(4)+y(5)+y(6)+y(7)+y(8)+y(9)+y(10)+y(11)+y(12))/9;

%middle points using a symmetric one

y_av(5:lx-4) = (y(1:lx-8)+y(2:lx-7)+y(3:lx-6)+y(4:lx-5)+y(5:lx-4)+...

y(6:lx-3)+y(7:lx-2)+y(8:lx-1)+y(9:lx))/9;

%last 4-2 points are calculated using a 3 point average

y_av(lx-3) = (y(lx-4)+y(lx-3)+y(lx-2))/3;

y_av(lx-2) = (y(lx-3)+y(lx-2)+y(lx-1))/3;

y_av(lx-1) = (y(lx-2)+y(lx-1)+y(lx))/3;

%last point is taken as a 2 point backward average

y_av(lx) = (y(lx-1)+y(lx))/2;

end

138 APPENDIX B. THE SOFTWARE ROUTINES

B.4.6 find scpot.m

%FIND_SCPOT Approximate spacecraft potential

%

% [Vsc1,Vsc2,Vsc3] = find_scpot(Vb,Ib,z)

%

% returns an approximation of the spacecraft potential. Vsc1 is just a

% global determination while Vsc2 is a determination around the

% zero-point z. Vsc3 is a determination based on where the curve

% "shoots up" from a line

%

% Vb is the bias potential, Ib the bias current and z the

% zero-crossing of the current.

%

% z is used as a first location of the vicinity in which Vsc should be,

% then the maximum of the absolute of the second derivative of the

% current is taken as Vsc, i.e. Vsc = max(abs((d2I))

function [Vsc1,Vsc2,Vsc3] = find_scpot(Vb,Ib,z)

Vsc1 = [];

Vsc2 = [];

Vsc3 = [];

lV = length(Vb);

lI = length(Ib);

if lV == lI

% Ib_smooth(1:lI-1) = (Ib(1:lI-1)+Ib(2:lI))./2;

% Ib_smooth(lI) = Ib(lI);

%%%

%To smooth the data the mean value of each datapoint with its neighbour is%

%taken. %

%%%

points = length(Vb);

lgolay = max([(2*floor(points/12)+1) 5]);

Ib_smooth = smooth(Ib,lgolay,’sgolay’);

Vb2 = Vb;

Ib2 = Ib_smooth;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Taking the second derivative%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

d2Ib = d2(Vb2,Ib2);

%%

%"Global" Vsc as the maximum of the second derivative%

%%

Vsc1 = -Vb2(max(find(abs(d2Ib) == max(abs(d2Ib)))));

%%%

%Now an interval around z is used to look for Vsc, this is done as a%

%"quality" check on the spacecraft potential found. %

%%%

if z ~= 0

interval = 2; %Size of interval (up and down)

ind1 = find(Vb2 > z-interval);

ind2 = find(Vb2 < z+interval);

ind1 = ind1(1);

ind2 = ind2(length(ind2));

V2 = Vb2(ind1:ind2);

d2Ib2 = d2Ib(ind1:ind2);

Vsc2 = -V2(max(find(abs(d2Ib2) == max(abs(d2Ib2)))));

B.4. FITTING ROUTINES 139

end

%%%

%Look for an approximate Vsc by comparing a straight line (given%

%from the low 10% of the sweep) to the real data, seeing %

%where it "shoots up" %

%%%

try

ind = floor(0.1*length(Vb2));

P = polyfit(Vb2(1:ind),Ib2(1:ind)’,1); %Its a line

max_er = max(abs(diff(Ib2(1:ind))));

m = P(2)+max_er*4; %to take care of noise

I_err = linspace(m,m,length(Vb2));

err = I_err - Ib2;

indi = find(err < 0, 1, ’first’);

%%%

%Now that we have an approximate Vsc lets look at the current %

%values that are located around this point. Using derivatives to%

%get Vsc %

%%%

interval = 3;

ind1 = find(Vb2 > Vb2(indi)-interval);

ind2 = find(Vb2 < Vb2(indi)+interval);

ind1 = ind1(1);

ind2 = ind2(length(ind2));

V3 = Vb2(ind1:ind2);

d2Ib3 = d2Ib(ind1:ind2);

Vsc3 = -V3(max(find(abs(d2Ib3) == max(abs(d2Ib3)))));

catch

Vsc3 = 0;

end

end

B.4.7 d2.m

%d2 Approximate second derivative

% [d2y] = d2(x,y) returns the second derivative of y with respect to x.

% d2y is a vector of the same length as y. The vectors should be sorted

% in ascending order. If the length of the data is less than 5 gradient

% will be used.

%

% The differentiation is:

% y_0’’=(2*y_4-27*y_3+270*y_2-490*y_0+270*y_-1-27*y_-2+2*y_-3)/(180*h^2)

%

% [d2y,d3y] = d2(x,y) provides both the second and the third derivative

% where the third is evaluated using a similar scheme but only 6 points

function [d2y,d3y] = d2(x,y)

d2y = [];

d3y = [];

lx = length(x); %checking sizes

ly = length(y);

lgolay = max([(2*floor(lx/12)+1) 5]);

y = smooth(y,lgolay,’sgolay’);

% if (lx == ly && lx >= 5)

% h = x(2)-x(1); %the steplength is the same throughout

140 APPENDIX B. THE SOFTWARE ROUTINES

% %%%%%%%%%%%%%%%%%%%%%%%

% %The second derivative%

% %%%%%%%%%%%%%%%%%%%%%%%

% %Use forward differentiation for left boundary

% d2y(1) = (11*y(5)-56*y(4)+114*y(3)-104*y(2)+35*y(1))/(12*h^2);

% d2y(2) = (11*y(6)-56*y(5)+114*y(4)-104*y(3)+35*y(2))/(12*h^2);

% d2y(3) = (11*y(7)-56*y(6)+114*y(5)-104*y(4)+35*y(3))/(12*h^2);

% %Now use the 7-point symmetric formula

% d2y(4:lx-3) = (2*y(7:lx)-27*y(6:lx-1)+270*y(5:lx-2)-490*y(4:lx-3)+...

% 270*y(3:lx-4)-27*y(2:lx-5)+2*y(1:lx-6))/(180*h^2);

% %Use backward differentiation for right boundary

% d2y(lx-2) = (35*y(lx-2)-104*y(lx-3)+114*y(lx-4)-...

% 56*y(lx-5)+11*y(lx-6))/(12*h^2);

% d2y(lx-1) = (35*y(lx-1)-104*y(lx-2)+114*y(lx-3)-...

% 56*y(lx-4)+11*y(lx-5))/(12*h^2);

% d2y(lx) = (35*y(lx)-104*y(lx-1)+114*y(lx-2)-...

% 56*y(lx-3)+11*y(lx-4))/(12*h^2);

% %%%%%%%%%%%%%%%%%%%%%%

% %The third derivative%

% %%%%%%%%%%%%%%%%%%%%%%

% %Use forward differentiation for left boundary

% d3y(1) = (-3*y(5)+14*y(4)-24*y(3)+18*y(2)-5*y(1))/(2*h^3);

% d3y(2) = (-3*y(6)+14*y(5)-24*y(4)+18*y(3)-5*y(2))/(2*h^3);

% d3y(3) = (-3*y(7)+14*y(6)-24*y(5)+18*y(4)-5*y(3))/(2*h^3);

% %Now use the 6-point symmetric formula

% d3y(4:lx-3) = (-y(7:lx)+8*y(6:lx-1)-13*y(5:lx-2)+13*y(3:lx-4)-...

% 8*y(2:lx-5)+y(1:lx-6))/(8*h^3);

% %Use backward differentiation for the right boundary

% d3y(lx-2) = (5*y(lx-2)-18*y(lx-3)+24*y(lx-4)-14*y(lx-5)+...

% 3*y(lx-6))/(2*h^3);

% d3y(lx-1) = (5*y(lx-1)-18*y(lx-2)+24*y(lx-3)-14*y(lx-4)+...

% 3*y(lx-5))/(2*h^3);

% d3y(lx) = (5*y(lx)-18*y(lx-1)+24*y(lx-2)-14*y(lx-3)+...

% 3*y(lx-4))/(2*h^3);

% else

%using simple gradient

d2y = gradient(smooth(gradient(y),lgolay,’sgolay’),x);

d3y = gradient(smooth(d2y,lgolay,’sgolay’),x);

%end

B.4.8 fit single e.m

%FIT_SINGLE_E fits the upper part of the electron side as a line assuming

% one electron population

%

% [Ie0,Te,k] = fit_single_e(Vb,I,Vsc)

function [Ie0,Te,k,Vsc1] = fit_single_e(Vb,I,Vsc0)

Ie0 = [];

Te = [];

Vp = Vb + Vsc0;

%Take the last 70% as the data to fit to

indp = find(Vp > 0);

V = Vp(indp);

I = I(indp);

B.4. FITTING ROUTINES 141

lenV = length(V);

indl = ceil(lenV*0.30);

Vh = V(indl:lenV);

Ih = I(indl:lenV);

%Now fit using a polynomial of degree 1, i.e. a line

P = polyfit(Vh,Ih,1);

k = P(1);

m = P(2);

Te0 = 0.5;

if (k > 25e-9)

Vsc1 = Vsc0-Te0+m/k;

else

Vsc1 = Vsc0;

end

m = k*Te0;

Ie0 = m;

Te = Te0;

B.4.9 determine ecl.m

%DETERMINE_ECL does a determination whether the probe is in eclipse (wake)

% of the spacecraft or not.

%

% f = determine_ecl(Vb,I,Vsc,phi,probe)

%

% phi is the elevation angle of the sun in radians

% probe is an integer specifying what probe is used (1 or 2)

function f = determine_ecl(Vb,I,Vsc,phi,probe)

ecl_value = 2e-9; %This is the value used to check for eclipse

%abs(sum(I(find(Vb < Vsc))))

if probe == 1;

%%%

%Probe one is in eclipse for phi >= 48 deg and phi <= 75 deg approx.%

%%%

if phi >= 0.83775804095728 && phi <= 1.30899693899575

disp(’Probe 1 is in eclipse’)

f = -eps;

else

disp(’Probe 1 is probably not in eclipse’)

if (abs(sum(I(find(Vb < Vsc)))) < ecl_value)

disp(’Correction, probe 1 is in eclipse from absolute ion value’)

f = -eps;

else

f = -1;

end

end

end

if probe == 2

%%%

%Probe 2 is in eclipse for phi <= -27 deg and phi >= -72 deg approx.%

%%%

if phi <= -0.47123889803847 && phi >= -1.25663706143592

disp(’Probe 2 is in eclipse’)

f = -eps;

else

142 APPENDIX B. THE SOFTWARE ROUTINES

disp(’Probe 2 is probably not in eclipse’)

if (abs(sum(I(find(Vb < Vsc)))) < ecl_value)

disp(’Correction, probe 2 is in eclipse from absolute ion value’)

f = -eps;

else

f = -1;

end

end

end

B.4.10 fit data2.m

%FIT_DATA2 fits the parameters to the data in several steps and in different

% ways depending on what models are used

%

% [par_out,fits_out] = fit_data2(Vb,I,par,handles)

%

% par is a row or column vector containing all the parameters needed for

% the fit: [Iph01 Iph02 Tph1 Tph2 a b c d g h Vsc f z]

function [par_out,fits_out] = fit_data2(Vb,I,par,handles)

par_out = [];

fits_out = [];

fit2_ok = 0;

%Setting up the parameters

Iph01 = par(1);

Iph02 = par(2);

Tph1 = par(3);

Tph2 = par(4);

a = par(5);

b = par(6);

c = par(7);

d = par(8);

g = par(9);

h = par(10);

Vsc = par(11);

f = par(12);

ph_par = [Iph01 Iph02 Tph1 Tph2];

%Setting up some bounds

amin = -1e-3;

amax = -1e-12;

bmin = 0;

bmax = 1e-2;

cmin = 0;

cmax = 1e-2;

dmin = 1/100;

dmax = 1/0.1;

gmin = 0;

gmax = 1e-2;

hmin = 1/100;

hmax = 1/0.0001;

if (max(I) < 300e-9)

Vscmin = Vsc-7;

Vscmax = Vsc+7;

else

B.4. FITTING ROUTINES 143

Vscmin = Vsc-1;

Vscmax = Vsc+1;

end

fmin = -2;

fmax = 0;

%Determine the interval to use

% if (handles.fit_partial == 1) %use data below 50 nA

% V_1 = Vb(find(I < 50e-9));

% I_1 = I(find(I < 50e-9));

% if (V_1(length(V_1)) < Vsc) %if this is below Vsc, use Vsc+2 and

% V_1 = Vb(find(Vb < (-Vsc+2))); %below

% I_1 = I(find(Vb < (-Vsc+2)));

% end

% else %use entire data set

% V_1 = Vb;

% I_1 = I;

% end

% V_1

% I_1

if (handles.fit_partial == 1)

V_1 = Vb(find(Vb < 8));

I_1 = I(find(Vb < 8));

else

V_1 = Vb;

I_1 = I;

end

%Set up information for the fit evaluation

nr_points = 10*length(Vb); %# points used to fit

V_fit = linspace(min(Vb),max(Vb),nr_points); %Entire data used

%If debug mode, plot the initial value plot

if (handles.debug == 1)

fitu = feval(@model,[a b c d g h Vsc f],V_fit,ph_par,18,[],handles);

figure(10), plot(Vb,I,’.’,V_fit,fitu,’red’);

grid on;

title(’Initial guess plot’);

xlabel(’press any key’);

format long;

par’

pause

end

%Defining the optimization ranges for lsqcurvefit

%Change here if a lower tolerance is desirable

opt = optimset(’lsqcurvefit’);

opt.TolX = 1E-25;

opt.TolFun = 1E-15;

opt.MaxFunEvals = 5000;

opt.MaxIter = 5000;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Starting the fitting procedure%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Trying to determine Vsc better. Here different

%parameters are kept fixed depending on what the user has choosen

%%%

144 APPENDIX B. THE SOFTWARE ROUTINES

[V2,I2] = weighting(V_1,I_1,-Vsc,5,100);

%Ram ions, plasmaelectrons (A) or Therm ions, plasmaelectrons (C)

if ((handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 0) || (handles.e_plasma == 1 && ...

handles.e_sc == 0 && handles.i_ram == 0 && handles.e_photo == 0))

params_in = [a Vsc];

lowbound = [amin Vscmin];

highbound = [amax Vscmax];%[amax Vscmax zmax];

vargin = [b c d];

ref = 1;

end

%Ram ions, plasma- and photoelectrons (B) or Therm ions, plasma- and photo-

% electrons (D)

if ((handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 1) ||(handles.e_plasma == 1 && ...

handles.e_sc == 0 && handles.i_ram == 0 && handles.e_photo == 1))

params_in = [a Vsc f];

lowbound = [amin Vscmin fmin];

highbound = [amax Vscmax fmax];%[amax Vscmax fmax zmax];

vargin = [b c d];

ref = 2;

end

%Ram ions, plasma- and sc-electrons (E) or Therm ions-, plasma- and

% sc-electrons (G)

if ((handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 0) || (handles.e_plasma == 1 && ...

handles.e_sc == 1 && handles.i_ram == 0 && handles.e_photo == 0))

params_in = [a Vsc];

lowbound = [amin Vscmin];

highbound = [amax Vscmax];%[amax Vscmax zmax];

vargin = [b c d g h];

ref = 3;

end

%Ram ions, plasma-, sc- and photoelectrons (F) or Therm ions, plasma-,

% sc- and photoelectrons

% (H)

if ((handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 1) || (handles.e_plasma == 1 ...

&& handles.e_sc == 1 && handles.i_ram == 0 && handles.e_photo == 1))

params_in = [a Vsc f];

lowbound = [amin Vscmin fmin];

highbound = [amax Vscmax fmax];%[amax Vscmax fmax zmax];

vargin = [b c d g h];

ref = 4;

end

try

[params_out,resnorm] = lsqcurvefit(@model,params_in,V2,I2,lowbound,...

highbound,opt,ph_par,ref,vargin,...

handles);

catch

params_out(1:4) = 0;

resnorm = inf;

end

%Save fit

a = params_out(1);

Vsc = params_out(2);

if (ref == 2 || ref == 4)

B.4. FITTING ROUTINES 145

f = params_out(3);

else

f = 0;

end

fit1 = feval(@model,params_out,V_fit,ph_par,ref,vargin,handles);

pars1 = [a b c d g h Vsc f];

%Plot if in debug mode

if (handles.debug == 1)

figure(10), plot(Vb,I,’.’,V_fit,fit1,’red’);

grid on;

title(’Fit nr. 1, Focus on Vsc’);

xlabel(’press any key’);

pars1’

pause

end

%Now a better evaluation of Te is obtained by looking close to the

%spacecraft potential (PROBLEM: Vsc maste vara bestamd ok nu iaf.)

%%

indic = find(Vb < -Vsc+1,3,’last’);

Itry = I(indic);

Vtry = Vb(indic);

if (handles.debug == 1)

figure(10),plot(Vb,I,Vtry,Itry,’.’)

grid on

pause

end

opt.TolX = 1e-55;

opt.TolFun = 1e-25;

opt.MaxFunEvals = 15000;

opt.MaxIter = 15000;

a = par(5);

b = par(6);

c = par(7);

d = par(8);

g = par(9);

h = par(10);

Vsc = par(11);

f = par(12);

params_intry = [c d f];

lowbound = [cmin dmin fmin];

highbound = [cmax dmax fmax];%[amax Vscmax fmax zmax];

vargintry = [a b g h Vsc];

reftry = 23;

try

[params_outry,resnormtry] = lsqcurvefit(@model,params_intry,Vtry,Itry,lowbound,...

highbound,opt,ph_par,reftry,vargintry,...

handles);

catch

params_outry(1:3) = 0;

resnormtry = inf;

end

c = params_outry(1);

d = params_outry(2);

f = params_outry(3);

146 APPENDIX B. THE SOFTWARE ROUTINES

paru = [a b c d g h Vsc f];

fittry = feval(@model,paru,V_fit,ph_par,18,[],handles);

%Plot if in debug mode

if (handles.debug == 1)

figure(10), plot(Vb,I,’.’,V_fit,fittry,’red’);

grid on;

title(’Electron try’);

xlabel(’press any key’);

paru’

pause

end

opt.TolX = 1e-25;

opt.TolFun = 1e-15;

opt.MaxFunEvals = 5000;

opt.MaxIter = 5000;

%Now try to get a good fix on the electron populations

%%

if (Vsc > 0) %only if Vsc > 0 since otherwise

ind = find(Vb > 0); %there is no possibility to

percent = ceil(0.70*length(ind));%distinguish the two e-pops.

weight = Vb(ind(percent));

fit2_ok = 1; %This is for later

if (weight < 10)

interval = 3;

else

interval = (weight-8+2);

end

[V2,I2] = weighting(V_1,I_1,weight,interval,100);

%Ram ions, plasmaelectrons (A) or Therm ions, plasmaelectrons (C)

if ((handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 0) || (handles.e_plasma == 1 && ...

handles.e_sc == 0 && handles.i_ram == 0 && handles.e_photo == 0))

params_in2 = [c d Vsc];

lowbound = [cmin dmin Vscmin];

highbound = [cmax dmax Vscmax];%[dmax Vscmax zmax];

vargin2 = [a b];

ref2 = 5;

end

%Ram ions, plasma- and photoelectrons (B) or Therm ions, plasma- and photo-

% electrons (D)

if ((handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 1) ||(handles.e_plasma == 1 && ...

handles.e_sc == 0 && handles.i_ram == 0 && handles.e_photo == 1))

params_in2 = [c d Vsc f];

lowbound = [cmin dmin Vscmin fmin];

highbound = [cmax dmax Vscmax fmax];

vargin2 = [a b];

ref2 = 6;

end

%Ram ions, plasma- and sc-electrons (E) or Therm ions-, plasma- and

% sc-electrons (G)

if ((handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 0) || (handles.e_plasma == 1 && ...

handles.e_sc == 1 && handles.i_ram == 0 && handles.e_photo == 0))

B.4. FITTING ROUTINES 147

params_in2 = [c d g h Vsc];

lowbound = [cmin dmin gmin hmin Vscmin];

highbound = [cmax dmax gmax hmax Vscmax];

vargin2 = [a b];

ref2 = 7;

end

%Ram ions, plasma-, sc- and photoelectrons (F) or Therm ions, plasma-,

% sc- and photoelectrons

% (H)

if ((handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 1) || (handles.e_plasma == 1 ...

&& handles.e_sc == 1 && handles.i_ram == 0 && handles.e_photo == 1))

params_in2 = [c d g h Vsc f];

lowbound = [cmin dmin gmin hmin Vscmin fmin];

highbound = [cmax dmax gmax hmax Vscmax fmax];

vargin2 = [a b];

ref2 = 8;

end

try

[params_out2,resnorm2] = lsqcurvefit(@model,params_in2,V2,I2,...

lowbound,highbound,opt,ph_par,...

ref2,vargin2,handles);

catch

params_out2(1:6) = 0;

resnorm2 = inf;

end

%Save fit

c = params_out2(1);

d = params_out2(2);

if (length(params_out2) == 3)

Vsc = params_out2(3);

f = 0;

g = 0;

h = 0;

end

if (length(params_out2) == 4)

Vsc = params_out2(3);

f = params_out2(4);

g = 0;

h = 0;

end

if (length(params_out2) == 5)

g = params_out2(3);

h = params_out2(4);

Vsc = params_out2(5);

f = 0;

end

if (length(params_out2) == 6)

g = params_out2(3);

h = params_out2(4);

Vsc = params_out2(5);

f = params_out2(6);

end

fit2 = feval(@model,params_out2,V_fit,ph_par,ref2,vargin2,handles);

pars2 = [a b c d g h Vsc f];

148 APPENDIX B. THE SOFTWARE ROUTINES

if (handles.debug == 1)

figure(10), plot(Vb,I,’.’,V_fit,fit2,’red’);

grid on;

title(’Fit nr. 2, Focus on electron population’);

xlabel(’press any key’);

pause

pars2’

end

end

%Now try to get a good fix on the ion side

%%

ind = find(Vb < 0);

percent = floor(0.50*length(ind));

weight = Vb(ind(percent));

[V2,I2] = weighting(V_1,I_1,weight,10,300);

%Ram ions, plasmaelectrons (A) or Therm ions, plasmaelectrons (C)

if ((handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 0) || (handles.e_plasma == 1 && ...

handles.e_sc == 0 && handles.i_ram == 0 && handles.e_photo == 0))

params_in4 = [a b c d Vsc];

lowbound = [amin bmin cmin dmin Vscmin];

highbound = [amax bmax cmax dmax Vscmax];%[dmax Vscmax zmax];

vargin4 = [];

ref4 = 14;

end

%Ram ions, plasma- and photoelectrons (B) or Therm ions, plasma- and photo-

% electrons (D)

if ((handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 1) ||(handles.e_plasma == 1 && ...

handles.e_sc == 0 && handles.i_ram == 0 && handles.e_photo == 1))

params_in4 = [a b c d Vsc f];

lowbound = [amin bmin cmin dmin Vscmin fmin];

highbound = [amax bmax cmax dmax Vscmax fmax];

vargin4 = [];

ref4 = 15;

end

%Ram ions, plasma- and sc-electrons (E) or Therm ions-, plasma- and

% sc-electrons (G)

if ((handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 0) || (handles.e_plasma == 1 && ...

handles.e_sc == 1 && handles.i_ram == 0 && handles.e_photo == 0))

params_in4 = [a b c d Vsc];

lowbound = [amin bmin cmin dmin Vscmin];

highbound = [amax bmax cmax dmax Vscmax];

vargin4 = [g h];

ref4 = 16;

end

%Ram ions, plasma-, sc- and photoelectrons (F) or Therm ions, plasma-,

% sc- and photoelectrons

% (H)

if ((handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 1) || (handles.e_plasma == 1 ...

&& handles.e_sc == 1 && handles.i_ram == 0 && handles.e_photo == 1))

params_in4 = [a b c d Vsc f];

lowbound = [amin bmin cmin dmin Vscmin fmin];

B.4. FITTING ROUTINES 149

highbound = [amax bmax cmax dmax Vscmax fmax];

vargin4 = [g h];

ref4 = 17;

end

try

[params_out4,resnorm4] = lsqcurvefit(@model,params_in4,V2,I2,...

lowbound,highbound,opt,ph_par,...

ref4,vargin4,handles);

catch

params_out4(1:6) = 0;

resnorm4 = inf;

end

%Save fit

a = params_out4(1);

b = params_out4(2);

c = params_out4(3);

d = params_out4(4);

if (ref4 == 14)

Vsc = params_out4(5);

f = 0;

g = 0;

h = 0;

end

if (ref4 == 15)

Vsc = params_out4(5);

f = params_out4(6);

g = 0;

h = 0;

end

if (ref4 == 16)

Vsc = params_out4(5);

end

if (ref4 == 17)

Vsc = params_out4(5);

f = params_out4(6);

end

fit4 = feval(@model,params_out4,V_fit,ph_par,ref4,vargin4,handles);

pars4 = [a b c d g h Vsc f];

if (handles.debug == 1)

figure(10), plot(Vb,I,’.’,V_fit,fit4,’red’);

grid on;

title(’Fit nr. 3, Focus on ion side’);

xlabel(’press any key’);

pars4’

pause

end

%Finally fit all with the obtained values

%%

if (fit2_ok == 1)

res = [resnorm,resnorm2,resnorm4];

fits = [fit1;fit2;fit4]; %Matrix containing the fits

pars = [pars1;pars2;pars4]; %Matrix containing the parameters

else

res = [resnorm,resnorm4];

fits = [fit1;fit4]; %Matrix containing the fits

pars = [pars1;pars4]; %Matrix containing the parameters

end

150 APPENDIX B. THE SOFTWARE ROUTINES

[fit,param] = choose_fit(Vb,I,fits,pars,res);

a = param(1);

b = param(2);

c = param(3);

d = param(4);

g = param(5);

h = param(6);

Vsc = param(7);

f = param(8);

[V2,I2] = weighting(V_1,I_1,-Vsc,1,100);

%Ram ions, plasmaelectrons (A) or Therm ions, plasmaelectrons (C)

if ((handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 0) || (handles.e_plasma == 1 && ...

handles.e_sc == 0 && handles.i_ram == 0 && handles.e_photo == 0))

params_in3 = [a c d Vsc];

lowbound = [amin cmin dmin Vscmin];

highbound = [amax cmax dmax Vscmax];

vargin3 = [b];

ref3 = 9;

end

%Ram ions, plasma- and photoelectrons (B) or Therm ions, plasma- and photo-

% electrons (D)

if ((handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 1) ||(handles.e_plasma == 1 && ...

handles.e_sc == 0 && handles.i_ram == 0 && handles.e_photo == 1))

params_in3 = [a c d Vsc f];

lowbound = [amin cmin dmin Vscmin fmin];

highbound = [amax cmax dmax Vscmax fmax];

vargin3 = [b];

ref3 = 10;

end

%Ram ions, plasma- and sc-electrons (E) or Therm ions-, plasma- and

% sc-electrons (G)

if ((handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 0) || (handles.e_plasma == 1 && ...

handles.e_sc == 1 && handles.i_ram == 0 && handles.e_photo == 0))

params_in3 = [a c d g h Vsc];

lowbound = [amin cmin dmin gmin hmin Vscmin];

highbound = [amax cmax dmax gmax hmax Vscmax];

vargin3 = [b];

ref3 = 11;

end

%Ram ions, plasma-, sc- and photoelectrons (F) or Therm ions, plasma-,

% sc- and photoelectrons

% (H)

if ((handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 1) || (handles.e_plasma == 1 ...

&& handles.e_sc == 1 && handles.i_ram == 0 && handles.e_photo == 1))

params_in3 = [a c d g h Vsc f];

lowbound = [amin cmin dmin gmin hmin Vscmin fmin];

highbound = [amax cmax dmax gmax hmax Vscmax fmax];

vargin3 = [b];

ref3 = 12;

end

B.4. FITTING ROUTINES 151

try

[params_out3,resnorm3] = lsqcurvefit(@model,params_in3,V2,I2,...

lowbound,highbound,opt,ph_par,...

ref3,vargin3,handles);

catch

params_out3(1:7) = 0;

resnorm3 = inf;

end

%Save the data for this fit

a = params_out3(1);

c = params_out3(2);

d = params_out3(3);

if (length(params_out3) == 4)

Vsc = params_out3(4);

f = 0;

g = 0;

h = 0;

end

if (length(params_out3) == 5)

Vsc = params_out3(4);

f = params_out3(5);

g = 0;

h = 0;

end

if (length(params_out3) == 6)

g = params_out3(4);

h = params_out3(5);

Vsc = params_out3(6);

f = 0;

end

if (length(params_out3) == 7)

g = params_out3(4);

h = params_out3(5);

Vsc = params_out3(6);

f = params_out3(7);

end

fit3 = feval(@model,params_out3,V_fit,ph_par,ref3,vargin3,handles);

pars3 = [a b c d g h Vsc f];

if (handles.debug == 1)

figure(10), plot(Vb,I,’.’,V_fit,fit3,’red’);

grid on;

title(’Fit nr. 4, All parameters free’);

xlabel(’press any key’);

pars3’

pause

end

%%%%%%%%%%%%%%%%%%%%%%%%

%Decide what fit to use%

%%%%%%%%%%%%%%%%%%%%%%%%

if (size(fit1,1) > 1)

fit1 = fit1’;

end

if (fit2_ok == 1)

if (size(fit2,1) > 1)

fit2 = fit2’;

end

end

152 APPENDIX B. THE SOFTWARE ROUTINES

if (size(fit3,1) > 1)

fit3 = fit3’;

end

if (size(fit4,1) > 1)

fit4 = fit4’;

end

if (fit2_ok == 1)

res = [resnorm,resnorm2,resnorm3,resnorm4];

fits = [fit1;fit2;fit3;fit4]; %Matrix containing the fits

pars = [pars1;pars2;pars3;pars4]; %Matrix containing the parameters

else

res = [resnorm,resnorm3,resnorm4];

fits = [fit1;fit3;fit4]; %Matrix containing the fits

pars = [pars1;pars3;pars4]; %Matrix containing the parameters

end

[fit,param] = choose_fit(Vb,I,fits,pars,res);

%plot the choosen fit if in debug mode

if (handles.debug == 1)

figure(10), plot(Vb,I,’.’,V_fit,fit,’red’);

grid on;

title(’Choosen fit, next comes determination of Te’);

xlabel(’press any key’);

param’

pause

end

%Determine d,c better

%%%%%%%%%%%%%%%%%%%%%%

a = param(1);

b = param(2);

c = param(3);

d = param(4);

g = param(5);

h = param(6);

Vsc = param(7);

f = param(8);

[V2,I2] = weighting(V_1,I_1,-Vsc+1,1.5,100);

opt.TolX = 1e-55;

opt.TolFun = 1e-15;

opt.MaxFunEvals = 5000;

opt.MaxIter = 5000;

%Ram ions, plasmaelectrons (A) or Therm ions, plasmaelectrons (C)

if ((handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 0) || (handles.e_plasma == 1 && ...

handles.e_sc == 0 && handles.i_ram == 0 && handles.e_photo == 0))

params_in5 = [c d];

lowbound = [cmin dmin];

highbound = [cmax dmax];%[amax Vscmax zmax];

vargin5 = [a b Vsc];

ref5 = 19;

end

%Ram ions, plasma- and photoelectrons (B) or Therm ions, plasma- and photo-

% electrons (D)

if ((handles.e_plasma == 1 && handles.e_sc == 0 && handles.i_ram == 1 ...

&& handles.e_photo == 1) ||(handles.e_plasma == 1 && ...

B.4. FITTING ROUTINES 153

handles.e_sc == 0 && handles.i_ram == 0 && handles.e_photo == 1))

params_in5 = [c d];

lowbound = [cmin dmin];

highbound = [cmax dmax];%[amax Vscmax fmax zmax];

vargin5 = [a b Vsc f];

ref5 = 20;

end

%Ram ions, plasma- and sc-electrons (E) or Therm ions-, plasma- and

% sc-electrons (G)

if ((handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 0) || (handles.e_plasma == 1 && ...

handles.e_sc == 1 && handles.i_ram == 0 && handles.e_photo == 0))

params_in5 = [c d];

lowbound = [cmin dmin];

highbound = [cmax dmax];%[amax Vscmax zmax];

vargin5 = [a b g h Vsc];

ref5 = 21;

end

%Ram ions, plasma-, sc- and photoelectrons (F) or Therm ions, plasma-,

% sc- and photoelectrons

% (H)

if ((handles.e_plasma == 1 && handles.e_sc == 1 && handles.i_ram == 1 ...

&& handles.e_photo == 1) || (handles.e_plasma == 1 ...

&& handles.e_sc == 1 && handles.i_ram == 0 && handles.e_photo == 1))

params_in5 = [c d];

lowbound = [cmin dmin];

highbound = [cmax dmax];%[amax Vscmax fmax zmax];

vargin5 = [a b g h Vsc f];

ref5 = 22;

end

try

[params_out5,resnorm5] = lsqcurvefit(@model,params_in5,V2,I2,lowbound,...

highbound,opt,ph_par,ref5,vargin5,...

handles);

catch

params_out5(1:4) = 0;

disp(’c and d fit not correct’)

resnorm5 = inf;

end

%Save fit

c = params_out5(1);

d = params_out5(2);

fit5 = feval(@model,params_out5,V_fit,ph_par,ref5,vargin5,handles);

pars5 = [a b c d g h Vsc f];

%Plot if in debug mode

if (handles.debug == 1)

figure(10), plot(Vb,I,’.’,V_fit,fit5,’red’);

grid on;

title(’Fit nr. 5, Focus on d and c (electron temp.)’);

xlabel(’press any key’);

pars5’

pause

end

%Determine an error

p_in(1) = pars5(1); %a

154 APPENDIX B. THE SOFTWARE ROUTINES

p_in(2) = pars5(2); %b

p_in(3) = pars5(3); %c

p_in(4) = pars5(4); %d

p_in(5) = pars5(5); %g

p_in(6) = pars5(6); %h

p_in(7) = pars5(7); %Vsc

p_in(8) = pars5(8); %f

v_in = [];

reference = 18;

fit_e = feval(@model,p_in,V_1,ph_par,reference,v_in,handles);

err = errorest(I_1,fit_e’); %The error is calculated

%Set the output

fits_out(1,1:nr_points) = V_fit;

fits_out(2,1:nr_points) = fit5;

par_out(1:4) = par(1:4); %Iph01,Iph02,Tph1,Tph2

par_out(5:12) = pars5; %The parameters

par_out(13) = par(13); %z is unaltered

par_out(14) = err; %The error

B.4.11 model.m

%MODEL calculates the model value given the different parameters

%

% I = model(params,Vb,ph_par,ref,vargin,handles)

%

% params are the variable parameters while vargin are the ones kept

% fixed, a reference (ref) is used to choose which parameters to keep

% fixed according to the following:

%

% 1, params = [a Vsc], vargin = [b d] (ram,plasma)

% 2, params = [a Vsc f], vargin = [b d] (ram,plasma,photo)

% 3, params = [

%

% ph_par is a vector containing the photoelectron parameters and should

% be [Iph01 Iph02 Tph1 Tph2]

%

% handles is a structure containing information about what currents to

% use in the fit (eg. handles.e_plasma = 1, handles.e_photo = 0 etc.)

function I = model(params,Vb,ph_par,ref,vargin,handles)

I = 0; %clear

Iph = 0;

Ii = 0;

Ie_p = 0;

Ie_sc = 0;

%The parameters are set

if (ref == 1)

a = params(1);

Vsc = params(2);

b = vargin(1);

c = vargin(2);

d = vargin(3);

B.4. FITTING ROUTINES 155

f = 0;

g = 0;

h = 0;

end

if (ref == 2)

a = params(1);

Vsc = params(2);

f = params(3);

b = vargin(1);

c = vargin(2);

d = vargin(3);

g = 0;

h = 0;

end

if (ref == 3)

a = params(1);

Vsc = params(2);

b = vargin(1);

c = vargin(2);

d = vargin(3);

g = vargin(4);

h = vargin(5);

f = 0;

end

if (ref == 4)

a = params(1);

Vsc = params(2);

f = params(3);

b = vargin(1);

c = vargin(2);

d = vargin(3);

g = vargin(4);

h = vargin(5);

end

if (ref == 5)

c = params(1);

d = params(2);

Vsc = params(3);

a = vargin(1);

b = vargin(2);

g = 0;

h = 0;

f = 0;

end

if (ref == 6)

c = params(1);

d = params(2);

Vsc = params(3);

f = params(4);

a = vargin(1);

b = vargin(2);

g = 0;

h = 0;

end

if (ref == 7)

c = params(1);

d = params(2);

g = params(3);

156 APPENDIX B. THE SOFTWARE ROUTINES

h = params(4);

Vsc = params(5);

a = vargin(1);

b = vargin(2);

f = 0;

end

if (ref == 8)

c = params(1);

d = params(2);

g = params(3);

h = params(4);

Vsc = params(5);

f = params(6);

a = vargin(1);

b = vargin(2);

end

if (ref == 9)

a = params(1);

c = params(2);

d = params(3);

Vsc = params(4);

b = vargin(1);

f = 0;

g = 0;

h = 0;

end

if (ref == 10)

a = params(1);

c = params(2);

d = params(3);

Vsc = params(4);

f = params(5);

b = vargin(1);

g = 0;

h = 0;

end

if (ref == 11)

a = params(1);

c = params(2);

d = params(3);

g = params(4);

h = params(5);

Vsc = params(6);

b = vargin(1);

f = 0;

end

if (ref == 12)

a = params(1);

c = params(2);

d = params(3);

g = params(4);

h = params(5);

Vsc = params(6);

f = params(7);

b = vargin(1);

end

if (ref == 13)

B.4. FITTING ROUTINES 157

Vsc = params(1);

a = vargin(1);

b = vargin(2);

d = vargin(3);

g = vargin(4);

h = vargin(5);

f = vargin(6);

end

if (ref == 14)

a = params(1);

b = params(2);

c = params(3);

d = params(4);

Vsc = params(5);

g = 0;

h = 0;

f = 0;

end

if (ref == 15)

a = params(1);

b = params(2);

c = params(3);

d = params(4);

Vsc = params(5);

f = params(6);

g = 0;

h = 0;

end

if (ref == 16)

a = params(1);

b = params(2);

c = params(3);

d = params(4);

Vsc = params(5);

g = vargin(1);

h = vargin(2);

f = 0;

end

if (ref == 17)

a = params(1);

b = params(2);

c = params(3);

d = params(4);

Vsc = params(5);

f = params(6);

g = vargin(1);

h = vargin(2);

end

if (ref == 18) %Good for plotting

a = params(1);

b = params(2);

c = params(3);

d = params(4);

g = params(5);

h = params(6);

Vsc = params(7);

f = params(8);

end

if (ref == 19)

158 APPENDIX B. THE SOFTWARE ROUTINES

c = params(1);

d = params(2);

a = vargin(1);

b = vargin(2);

Vsc = vargin(3);

g = 0;

h = 0;

f = 0;

end

if (ref == 20)

c = params(1);

d = params(2);

a = vargin(1);

b = vargin(2);

Vsc = vargin(3);

f = vargin(4);

g = 0;

h = 0;

end

if (ref == 21)

c = params(1);

d = params(2);

a = vargin(1);

b = vargin(2);

g = vargin(3);

h = vargin(4);

Vsc = vargin(5);

f = 0;

end

if (ref == 22)

c = params(1);

d = params(2);

a = vargin(1);

b = vargin(2);

g = vargin(3);

h = vargin(4);

Vsc = vargin(5);

f = vargin(6);

end

if (ref == 23)

c = params(1);

d = params(2);

f = params(3);

a = vargin(1);

b = vargin(2);

g = vargin(3);

h = vargin(4);

Vsc = vargin(5);

end

Iph01 = ph_par(1);

Iph02 = ph_par(2);

Tph1 = ph_par(3);

Tph2 = ph_par(4);

Vp = Vb + Vsc; %Probe potential

%Setting indices for the intervals

ind1 = find(Vp < 0);

B.4. FITTING ROUTINES 159

ind2 = find(Vp >= 0);

ind3 = find(Vb < 0);

ind4 = find(Vb >= 0);

lVp = length(Vp);

%Calculating the constituent currents

if (handles.i_ram == 1) %Ram ions

Ii(1,1:lVp) = (a+b*Vp-abs(a+b*Vp))/2;

else %Thermal ions

%Ii = zeros(size(Vp))’;

Ii(ind1) = a+b.*Vp(ind1);

Ii(ind2) = a*exp((b/a)*Vp(ind2));

end

if (handles.e_photo == 1) %Photoelectrons

Iph(ind1) = f*(Iph01+Iph02);

Iph(ind2) = f*(Iph01*(1+Vp(ind2)/Tph1).*exp(-Vp(ind2)/Tph1)+...

Iph02*(1+Vp(ind2)/Tph2).*exp(-Vp(ind2)/Tph2));

end

if (handles.e_plasma == 1) %Plasma electrons

Ie_p(ind1) = c.*exp(d.*Vp(ind1));

Ie_p(ind2) = c.*(1+d.*Vp(ind2));

end

if (handles.e_sc == 1) %Spacecraft photoelectrons

Ie_sc(ind3) = g.*exp(h.*Vb(ind3));

Ie_sc(ind4) = g.*(1+h.*Vb(ind4));

end

%Calculate the output current

I = Ii+Iph+Ie_p+Ie_sc;

if ref == 23

I = I’;

end

%Logarithmical weighting?

% if (ref == 19 || ref == 20 || ref == 21 || ref == 22)

% I = log(abs(I’));

% end

B.4.12 compute c.m

%COMPUTE_C determines a value for the variable c, given the other

% parameters

%

% c = compute_c(Vf,a,b,d,g,h,f,Vsc,ph_par,handles)

%

% ph_par = [Iph01 Iph02 Tph1 Tph2]

function c = compute_c(Vf,a,b,d,g,h,f,Vsc,ph_par,handles)

c = [];

Iph = 0;

Ii = 0;

Ie_p = 0;

Ie_sc = 0;

160 APPENDIX B. THE SOFTWARE ROUTINES

%Set up the photoelectron parameters

Iph01 = ph_par(1);

Iph02 = ph_par(2);

Tph1 = ph_par(3);

Tph2 = ph_par(4);

z = Vf-Vsc;

%Determine the different currents, provided that they should be used

if (handles.e_photo == 1) %Photo-electron current

if (Vf <= 0)

Iph = f*(Iph01+Iph02);

else

Iph = f*(Iph01*(1+Vf/Tph1)*exp(-Vf/Tph1)+...

Iph02*(1+Vf/Tph2)*exp(-Vf/Tph2));

end

end

if (handles.i_ram == 1) %Ram-ions

if (Vf <= -(a/b))

Ii = a+b*Vf;

else

Ii = 0;

end

else %Thermal ions

if (Vf <= 0)

Ii = a+b*Vf;

else

Ii = a*exp((b/a)*Vf);

end

end

if (handles.e_plasma == 1) %Plasma electrons

if (Vf <= 0)

Ie_p = exp(d*Vf);

else

Ie_p = (1+d*Vf);

end

end

if (handles.e_sc == 1) %Spacecraft photoelectrons

if (z <= 0)

Ie_sc = g*exp(h*z);

else

Ie_sc = g*(1+h*z);

end

end

%Now the parameter c can be calculated

c = -(Iph+Ii+Ie_sc)/(Ie_p);

if (c < 0)

c = 0;

end

B.4.13 weighting.m

%WEIGHTING weighs the data in the interval around V_weight by the amount

% specified by the user

B.4. FITTING ROUTINES 161

%

% [Vw,Iw] = weighting(V,I,V_weight,interval,weight)

function [Vw,Iw] = weighting(V,I,V_weight,interval,weight)

Vw = [];

Iw = [];

if (length(V) == length(I))

%%

%Weighing the data in an interval close to Vp = 0%

%%

i1 = find(V > V_weight-interval,1);

i2 = find(V < V_weight+interval,1,’last’);

Vw(1:i1-1) = V(1:i1-1);

Iw(1:i1-1) = I(1:i1-1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Here the weighing is performed%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

k = i1;

for i = i1:i2

Vw(k:k+weight) = V(i);

Iw(k:k+weight) = I(i);

k = k+weight+1;

end

len = length(V(i2+1:length(V)));

Vw(k:k+len-1) = V(i2+1:length(V));

Iw(k:k+len-1) = I(i2+1:length(I));

else

disp(’I and V are not the same length!’);

end

B.4.14 choose fit.m

%CHOOSE_FIT compares the different fits given and returns the one that fits

% the data best

%

% [fit,param] = choose_fit(Vb,I,fits,pars,res)

%

% fits should be a matrix containing one fit (i.e. current) on each row

%

% pars should be a matrix containing the parameters on each row

%

% res should be a row or column vector containing the resnorms (errors)

% of the fits, if this isn’t included the routine will perform a least

% square evaluation of the data.

function [fit,param] = choose_fit(Vb,I,fits,pars,res)

stl = size(fits,1); %Test how many?

[row1,col1] = find(imag(pars) ~= 0); %complex automatically removed

if length(row1 >= 1)

pars(row1,:) = 0;

fits(row1,:) = 0;

if (exist(’res’))

res(row1) = inf;

end

end

go = 1;

162 APPENDIX B. THE SOFTWARE ROUTINES

if (res ~= 0)

while (go == 1)

ind = find(res == min(res)); %extracting the fit with least error

if (length(ind) > 1)

ind = 1;

go = 0;

else

if (length(pars(1,:)) == 9)

if ((pars(ind,1) > 0) || (pars(ind,3) < 0));

res(ind) = inf;

else

go = 0;

end

else

if ((pars(ind,5) > 0) || (pars(ind,7) < 0));

res(ind) = inf;

else

go = 0;

end

end

end

end

else

for i = 1:stl

err(i) = errorest(I,fits(i,:));

end

ind = find(err == min(err));

end

fit = fits(ind,:);

param = pars(ind,:);

B.4.15 errorest.m

%ERROREST calculates the root mean square norm of the theoretical values

% to the data and returns it

%

% err = errorest(Idat,Icalc)

function err = errorest(Idat,Icalc)

err = sum((Idat-Icalc).^2);

err = sqrt(err)/length(Idat);

B.4.16 compare fits.m

%COMPARE_FITS compares the different fits given and chooses what fit to use

% for the real data, returning its parameters and fits.

%

% [par,ppar,fit,currents] = compare_fits(Vb,I,un,data,epop,handles)

%

% Data is a structure containing both the fits and the parameters in the

% following form: Data.par.a, Data.fit.a, Data.par.b, Data.fit.b etc.

%

% vsc is used for the conversion to physical parameters, being the

% spacecraft speed

%

B.4. FITTING ROUTINES 163

% epop = 1 means one electron population, epop = 2 means two

function [par,ppar,fit,currents] = compare_fits(Vb,I,data,epop,handles)

%Set up the fits and errors

err = [1e8 1e8]; %This is in case only one is used

if (handles.fit_partial == 1)

if (epop == 1)

fit1 = data.fit.a(1:2,:);

err(1) = data.par.a(12);

else

fit1 = data.fit.a(1:2,:);

err(1) = data.par.a(14);

end

end

if (handles.fit_all == 1)

if (epop == 1)

fit2 = data.fit.b(1:2,:);

err(2) = data.par.b(12);

else

fit2 = data.fit.b(1:2,:);

err(2) = data.par.b(14);

end

end

%compare the errors and

choice = find(min(err) == err);

%Plotting the fits

%figure,plot(Vb,I,’.’,fit1(1,:),fit1(2,:),’red’);

%title(’Partial data set used’)

%figure,plot(Vb,I,’.’,fit2(1,:),fit2(2,:),’red’);

%title(’All data used’)

if length(choice > 1) %Can have same error

choice = choice(1);

end

%Minimum error is choosen

switch choice

case 1

par = data.par.a;

fit = fit1;

case 2

par = data.par.b;

fit = fit2;

end

%Setting the physical parameters and the constituent currents

V = linspace(min(Vb),max(Vb),1000);

if (epop == 1)

ppar = par2phys2(par,handles,1)

[Iph,Ii,Ie] = get_I_parts(par,V,handles);

else

ppar = par2phys2(par,handles,2);

[Iph,Ii,Ie,Ie2] = get_I_parts(par,V,handles);

end

%Finally the output which isn’t already set are now set

currents{1} = Iph;

currents{2} = Ii;

currents{3} = Ie;

164 APPENDIX B. THE SOFTWARE ROUTINES

if (epop == 2)

currents{4} = Ie2;

end

B.4.17 par2phys2.m

%PAR2PHYS converts the parameters used in the sweep to physical units

%

% [phys_par] = par2phys(par,handles,ref)

%

% The reference indicates one or two electron populations

function phys_par = par2phys(par,handles,ref)

phys_par = [];

Ap = 0.0078539816; %Probe area [m^2]

rp = 0.025; %Probe radius [m]

qe = 1.60217733e-19; %elementary charge [C]

%kB = 8.617385e-5; %Boltzmanns constant [eV/K]

kB = 1.380658e-23; %Boltzmanns constant [J/K]

me = 9.1093897e-31; %electron mass [kg]

%setting s/c speed and ion mass

mi = handles.ion_mass;

vsc = handles.vsc;

Tph1 = par(3)*11600;

Tph2 = par(4)*11600;

Iph01 = -par(1)*par(12);

Iph02 = -par(2)*par(12);

Ii0 = -par(5);

Ti = -par(5)/par(6);

Ie01 = par(7);

Te1 = 1/par(8)*11600;

Ie02 = par(9);

Te2 = 1/par(10)*11600;

Vsc = par(11);

f = par(12);

z = par(13);

if (handles.fit_try_all == 1)

switch par(15); %need to determine which model was choosen

case 1

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 1; %fit partial data (one e-pop)

case 2

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 1; %fit partial data (one e-pop)

case 3

B.4. FITTING ROUTINES 165

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 1; %fit partial data (one e-pop)

case 4

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 1; %fit partial data (one e-pop)

case 5

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 0; %fit all data points (two e-pops)

case 6

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 0; %fit all data points (two e-pops)

case 7

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 0; %fit all data points (two e-pops)

case 8

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 0; %fit all data points (two e-pops)

end

end

%Determine the densities

n_e1 = Ie01/(Ap*qe*sqrt((kB*Te1)/(2*pi*me))); %density of electrons 1

n_e2 = Ie02/(Ap*qe*sqrt((kB*Te2)/(2*pi*me))); %density of electrons 2

if (handles.fit_free_densities == 1)

n_i = Ii0/(Ap*qe*sqrt((kB*Ti*11600)/(2*pi*mi)));

end

%If we have quasineutrality, ni = ne, so it can be determined

if (handles.fit_quasineutral == 1)

n_i = n_e1;

end

if (handles.i_ram == 1) %ram ions

mi = Ti*2*qe/(vsc^2);

else %thermal ions

mi = (Ap*qe*n_i/Ii0)^2*(kB*Ti*11600)/(2*pi);

end

phys_par(1) = Vsc;

%phys_par(2) = e;

phys_par(3) = f;

166 APPENDIX B. THE SOFTWARE ROUTINES

phys_par(4) = z;

phys_par(5) = Iph01;

phys_par(6) = Iph02;

phys_par(7) = Tph1;

phys_par(8) = Tph2;

phys_par(9) = n_i;

phys_par(10) = Ti;

phys_par(11) = mi;

phys_par(12) = n_e1;

phys_par(14) = n_e2;

phys_par(13) = Te1;

phys_par(15) = Te2;

phys_par(16) = Ie02;

if (handles.fit_try_all == 1)

phys_par(17) = par(15);

else

phys_par(17) = 0;

end

B.4.18 get I parts.m

%GET_I_PARTS provides the different currents that add up to the sweep

%

% [varargout] = get_I_parts(params,Vb,handles)

% where params is a vector containing the parameters Iph01,Iph02,Tph1,

% Tph2,a,b,c,d,Vsc,f,z,g,h, in that order

%

% The function can be called with three or four output arguments:

%

% Iph,Ii,Ie

% Iph,Ii,Ie,Ie2

function [varargout] = get_I_parts(params,Vb,handles)

Iph = zeros(size(Vb));

Ii = zeros(size(Vb));

Ie = zeros(size(Vb));

Ie2 = zeros(size(Vb));

Iph_2 = zeros(size(Vb));

Ii_2 = zeros(size(Vb));

Ie1_2 = zeros(size(Vb));

Ie2_2 = zeros(size(Vb));

%Set up the parameters

Iph01 = params(1);

Iph02 = params(2);

Tph1 = params(3);

Tph2 = params(4);

a = params(5);

b = params(6);

c = params(7);

d = params(8);

g = params(9);

h = params(10);

Vsc = params(11);

f = params(12);

z = params(13);

if (handles.fit_try_all == 1)

switch params(15); %need to determine which model was choosen

B.4. FITTING ROUTINES 167

case 1

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 1; %fit partial data (one e-pop)

case 2

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 1; %fit partial data (one e-pop)

case 3

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 1; %fit partial data (one e-pop)

case 4

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 0; %no sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 1; %fit partial data (one e-pop)

case 5

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 0; %fit all data points (two e-pops)

case 6

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 1; %ram ions

handles.fit_partial = 0; %fit all data points (two e-pops)

case 7

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 0; %no photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 0; %fit all data points (two e-pops)

case 8

handles.e_plasma = 1; %plasmaelectrons

handles.e_sc = 1; %sc-electrons

handles.e_photo = 1; %photoelectrons

handles.i_ram = 0; %thermal ions

handles.fit_partial = 0; %fit all data points (two e-pops)

end

end

%Determine the currents

Vp = Vb + Vsc;

ind1 = find(Vp < 0);

ind2 = find(Vp >= 0);

ind3 = find(Vb < 0);

ind4 = find(Vb >= 0);

lVp = length(Vp);

if (handles.i_ram == 1)

Ii(1,1:lVp) = (a+b.*Vp-abs(a+b.*Vp))/2;

end

168 APPENDIX B. THE SOFTWARE ROUTINES

if (handles.i_therm == 1)

Ii(ind1) = a+b.*Vp(ind1);

Ii(ind2) = a.*exp((b/a).*Vp(ind2));

end

if (handles.e_photo == 1)

Iph(ind1) = f.*(Iph01+Iph02);

Iph(ind2) = f.*(Iph01.*(1+Vp(ind2)./Tph1).*exp(-Vp(ind2)./Tph1)+...

Iph02.*(1+Vp(ind2)./Tph2).*exp(-Vp(ind2)./Tph2));

end

if (handles.e_plasma == 1)

Ie(ind1) = c.*exp(d.*Vp(ind1));

Ie(ind2) = c.*(1+d.*Vp(ind2));

end

if (handles.e_sc == 1)

Ie2(ind3) = g.*exp(h.*Vb(ind3));

Ie2(ind4) = g.*(1+h.*Vb(ind4));

end

%setting the output

if (nargout == 3)

varargout = {Iph Ii Ie};

end

if (nargout == 4)

varargout = {Iph Ii Ie Ie2};

end

