A network of automated cameras for NLC studies

Noctilucent clouds.
Noctilucent clouds. Photo: Peter Dalin, IRF.

After several years of testing in Moscow and Novosibirsk (Russia), an international network commenced work in 2004 in Moscow, Novosibirsk and Lund (Sweden) to continuously monitor noctilucent clouds (NLC).

This network has been extended for successive years, and at present (in 2020) it includes cameras situated in Port Glasgow, Scotland (55°N56’; 04°W41’); Athabasca, Canada (54°N44’; 113°W19’); Kamchatka, Russia (53°N04’; 158°E37’); Novosibirsk, Russia (54°N52’; 83°E06’); Moscow, Russia (56°N00’; 37°E29’); Vilnius, Salakas and Vidiskes, Lithuania (average coordinates 55°N00’; 26°E00’); and Århus, Silkeborg and Söndervig, Denmark (average coordinates 56°N09’; 10°E12’).

There are two supplementary digital cameras located in the Moscow region (Zvenigorod and Krasnogorsk), separated from the first one by 50 and 20 km, respectively. Cameras in Århus and Silkeborg are separated by a distance of about 50 km along a latitude circle that provides perfect conditions for the triangulation measurements and successive height estimations of NLC.

At present the NLC cameras in Canada, Denmark and Novosibirsk are connected to the Internet (during the summer), providing real time data; images from other cameras are processed after the end of the summer.

Each camera operates with the same programme: from 22:00 to 05:00 LT at the beginning (20 May – 9 June) and end of the NLC season (26 July – 15 August), taking images every 3 min, and from 23:00 to 04:00 LT during high NLC season (10 June – 25 July), taking images every 1 min.

The total number of observational nights for each season is 83. The field of view of the cameras ranges from 42×55° to 59×78°.

The most important feature is that these NLC cameras are located along approximately the same latitude circle of 54-56°. Such geographical camera locations provide comparable NLC observations (due to equal twilight illumination conditions and because of equal physical conditions in the mesopause since temperature, vertical and horizontal winds are latitude dependent) and provide us with the possibility to study NLC inhomogeneities on continental scales, as well as gravity wave and planetary wave activity.

The data (NLC images) are available upon request. Please contact Peter Dalin. peter.dalin@irf.se


The NLC cameras locations: 1. Port Glasgow (Scotland) 2. Athabasca (Canada) 3. Petropavlovsk-Kamchatsky (Russia) 4. Hokkaido (Japan) 5. Novosibirsk (Russia) 6. Petropavlovsk (Kazakhstan) 7. Moscow (Russia) 8. Vilnius, Salakas (Lithuania) 9. Århus, Silkeborg and Söndervig (Denmark)

Publications in refereed journals using the NLC NETWORK data:


Dalin, P., N. Pertsev, V. Perminov, D. Efremov, and V. Romejko: Stratospheric observations of noctilucent clouds: a new approach in studying middle- and large-scale mesospheric dynamics, Annales Geophysicae, 38, 61–71, https://doi.org/10.5194/angeo-38-61-2020, 2020. [html]

Dalin, P., V. Perminov, N. Pertsev, and V. Romejko: Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds, Journal of Geophysical Research-Atmospheres, 125, e2019JD030814, https://doi.org/10.1029/2019JD030814, 2020. [html]

Shevchuk, N., N. Pertsev, P. Dalin, and V. Perminov: Wave-induced variations in noctilucent cloud brightness: model and experimental studies, Journal of Atmospheric and Solar-Terrestrial Physics, 203, 105257, https://doi.org/10.1016/j.jastp.2020.105257, 2020 [html].


Dalin, P., N. Pertsev, V. Perminov, D. Efremov, and V. Romejko: Looking at “night-shining” clouds from the stratosphere, Eos, 100, https://doi.org/10.1029/2019EO118439, 2019. [html]

Sharma, P., P. Dalin, and I. Mann: Towards a framework for noctilucent cloud analysis, Remote Sensing, 11, 2743, doi:10.3390/rs11232743, 2019. [html]


Dalin, P., N. Pertsev, V. Perminov, A. Dubietis, A. Zadorozhny, M. Zalcik, I. McEachran, T. McEwan, K. Černis, J. Grønne, T. Taustrup, O. Hansen, H. Andersen, D. Melnikov, A. Manevich, V. Romejko, D. Lifatova: Response of noctilucent cloud brightness to daily solar variations, Journal of Atmospheric and Solar-Terrestrial Physics, V. 169, pp. 83-90, https://doi.org/10.1016/j.jastp.2018.01.025, 2018. [html].


Dalin, P., N. Gavrilov, N. Pertsev, V. Perminov, A. Pogoreltsev, N. Shevchuk, A. Dubietis, P. Völger, M. Zalcik, A. Ling, S. Kulikov, A. Zadorozhny, G. Salakhutdinov, and I. Grigoryeva: A case study of long gravity wave crests in noctilucent clouds and their origin in the upper tropospheric jet stream, Journal of Geophysical Research – Atmospheres, 121, doi:10.1002/2016JD025422, 2016. [html]

Zalcik, M.S., T.W. Lohvinenko, P. Dalin, and W.F. Denig: North American noctilucent cloud observations in 1964-77 and 1988-2014: analysis and comparisons, Journal of the Royal Astronomical Society of Canada, 110, 1, 8-15, 2016. [html]


Dalin, P., A. Pogoreltsev, N. Pertsev, V. Perminov, N. Shevchuk, A. Dubietis, M. Zalcik, S. Kulikov, A. Zadorozhny, D. Kudabayeva, A. Solodovnik, G. Salakhutdinov, I. Grigoryeva: Evidence of the formation of noctilucent clouds due to propagation of an isolated gravity wave caused by a tropospheric occluded front, Geophysical Research Letters, 42, 2037–2046, doi:10.1002/2014GL062776, 2015. [html]

Dalin, P.A., V.A. Romejko, N.N. Pertsev, and V.I. Perminov: Noctilucent clouds are already 130 years old, (in Russian), Priroda, N.11, pp.18-26, 2015. [pdf]

Pertsev, N., P. Dalin and V. Perminov, Influence of semidiurnal and semimonthly lunar tides on the mesopause as observed in hydroxyl layer and noctilucent clouds characteristics, Geomagnetism and Aeronomy, 55, 6, 811–820, doi:10.1134/S0016793215060109, 2015. [html]


Pertsev, N., P. Dalin, V. Perminov, V. Romejko, A. Dubietis, R. Balčiunas, K. Černis, M. Zalcik: Noctilucent clouds observed from the ground: sensitivity to mesospheric parameters and long-term time series, Earth, Planets and Space, 66, 98, doi:10.1186/1880-5981-66-98, 2014. [html]

Zalcik, M.S., M.P. Noble, P. Dalin, M. Robinson, D. Boyer, Z. Dzik, M. Heyhurst, J.G. Kunnunpuram, K. Mayo, G. Toering, M. Toering, K. Wooden, N. Creusot, B. Hengen, S. McVey, C. Packham, G. Prokop, L. Wilson, M. Connors, I. Schofield: In search of trends in noctilucent cloud incidence from the La Ronge flight service station (55N 105W), Journal of the Royal Astronomical Society of Canada, 108, 4, 148-155, 2014. [html]


Dalin, P., M. Connors, I. Schofield, A. Dubietis, N. Pertsev, V. Perminov, M. Zalcik, A. Zadorozhny, T. McEwan, I. McEachran, J. Grønne, O. Hansen, H. Andersen, S. Frandsen, D. Melnikov, V. Romejko, I. Grigoryeva: First common volume ground-based and space measurements of the mesospheric front in noctilucent clouds, Geophysical Research Letters40, 6399-6404, doi:10.1002/2013GL058553, 2013. [html]

Dalin, P., V. Perminov, N. Pertsev, A. Dubietis, A. Zadorozhny, A. Smirnov, A. Mezentsev, S. Frandsen, J. Grønne, O. Hansen, H. Andersen, I. McEachran, T. McEwan, J. Rowlands, H. Meyerdierks, M. Zalcik, M. Connors, I. Schofield, I. Veselovsky: Optical studies of rocket exhaust trails and artificial noctilucent clouds produced by Soyuz rocket launches, JGR-Atmospheres118, 14, 7850–7863, doi:10.1002/jgrd.50549, 2013.[html]


Dalin, P., N. Pertsev, A. Dubietis, M. Zalcik, A. Zadorozhny, M. Connors, I. Schofield, T. McEwan, I. McEachran, S. Frandsen, O. Hansen, H. Andersen, V. Sukhodoev, V. Perminov, R. Balčiunas, V. Romejko, A comparison between ground-based observations of noctilucent clouds and Aura satellite data, Journal of Atmospheric and Solar-Terrestrial Physics73, 14-15, 2097-2109, doi:10.1016/j.jastp.2011.01.020, 2011. [html]

Dubietis, A., P. Dalin, R. Balciunas, K. Cernis, N. Pertsev, V. Sukhodoev, V. Perminov, M. Zalcik, A. Zadorozhny, M. Connors, I. Schofield, T. McEwan, I. McEachran, S. Frandsen, O. Hansen, H. Andersen, J. Grönne, D. Melnikov, A. Manevich, and V. Romejko, Noctilucent clouds: modern ground-based photographic observations by a digital camera network. Applied Optics50, 28, pp. F72-F79, doi:10.1364/AO.50.000F72, 2011. [html]


Dalin, P., N. Pertsev, S. Frandsen, O. Hansen, H. Andersen, A. Dubietis, R. Balciunas, A case study of the evolution of a Kelvin-Helmholtz wave and turbulence in noctilucent clouds, Journal of Atmospheric and Solar-Terrestrial Physics72, 14-15, 1129-1138, doi:10.1016/j.jastp.2010.06.011, 2010. [pdf]

Dubietis, A., P. Dalin, R. Balciunas, K. Cernis, Observations of Noctilucent Clouds from Lithuania, Journal of Atmospheric and Solar-Terrestrial Physics72, 14-15, 1090-1099, doi:10.1016/j.jastp.2010.07.004, 2010. [html]


Dalin, P., N. Pertsev, A. Zadorozhny, M. Connors, I. Schofield, I. Shelton, M. Zalcik, T. McEwan, I. McEachran, S. Frandsen, O. Hansen, H. Andersen, V. Sukhodoev, V. Perminov, V. Romejko, Ground-based observations of noctilucent clouds with a northern hemisphere network of automatic digital cameras, Journal of Atmospheric and Solar-Terrestrial Physics70, 11-12, 1460-1472, doi:10.1016/j.jastp.2008.04.018, 2008. [pdf]

Created by Annelie Klint Nilsson at

Last modified by Rick McGregor at