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1 Introduction

Many dynamical problems have some sort of constraint imposed on them. In
classical mechanics, dynamical problems including holonomic constraints are often
solved by the introduction of generalized coordinates, i.e., using the constraint
equations g(x, t) = 0 we reduce the set of position variables, x, to a smaller set of
generalized coordinates, say x'. Thus we have transformed the original, con-
strained, dynamical problem in the variables x into an unconstrained problem in
the generalized coordinates x'.

This approach of stating the problem in terms of generalized coordinates is not
always possible. First of all the more general class of nonholonomic constraints
cannot be treated using this method. Examples of nonholonomic constraints are
inequality constraints or when the constraints involve the solution of a differential
equation. A second case is when the derivation of the generalized coordinates is too
complicated and, if carried out, prone to errors in the derivation. A third drawback
of using generalized coordinates is that the constraint forces do not appear
explicitly as part of the solution to the problem. Lastly the resulting equations of
motion are often highly nonlinear which can present numerical problems.

A solution is to state the dynamical problems as minimization problems and
reduce the constrained dynamical problems to constrained minimization problems.
By posing constrained dynamical problems as constrained minimization problems,
we can use the wealth of algorithms developed to solve these last problems.

To solve numerically such constrained dynamical minimization problems, two
things are especially important. First we need fast and robust methods to perform
the actual constrained minimization. Secondly we need time-discretization schemes
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that are stable and able to handle stiff problems. In this section we present three
methods for constrained minimization; penalty, Lagrangian and augmented Lag-
rangian methods. We also present an energy-preserving, implicit, time-discreti-
zation scheme.

In this article, the above methods are applied to the solution of several
constrained dynamical problems. In Sect. 2 we study the problem of a double
pendulum subject to both equality and inequality constraints; actually the prob-
lems with equality constraints considered in Sect. 2 are modelled by systems of
differential-algebraic equations for which efficient solution methods already exist
(see, e.g., [8, 11, 14] and the references therein). Section 3 treats the problem of
vibrating strings subject to inequality constraints and in Sect. 4 we present the
problem of large displacement of nonlinear beams. Section 5 contains some
conclusions concerning the methods discussed here.

In [10] the methods discussed here have been applied to a real world problem,
namely the simulation of the constrained motion of the Space Shuttle robotic arm
(the one which played such an important role in the repair of the Hubble telescope).

1.1 Constrained minimization

In this section we present three methods to solve constrained minimization prob-
lems. For clarity, we will discuss only the case of equality-constrained minimi-
zation. The methods presented are, with minor changes, also applicable to
inequality-constrained problems (see [13]).

The finite-dimensional, equality-constrained, minimization problem to be dis-
cussed is

{mxinf ), )

subject to g(x) =0.
Here f(x):R" - R and g(x):R" - R™ (m < n). We demand that f and g have
Lipschitz continuous second derivatives. Let us denote the solution of problem (1)
by x* (assuming there exists one). For an unconstrained minimization problem
a necessary condition for a minimum is Vf(x*) = 0. This is not, in general, true for
the constrained problem (1) since we also have to satisfy the constraints g(x*) = 0.

It can be shown (see, e.g., [ 5]) that the necessary conditions for a stationary point of
our constrained minimization problem (1) are

{g(x*) =0 and ?
VI (x*) + (Vg(x*))Ti* = 0.

Here A*eR™ is the Lagrange multiplier at the solution.

1.2 Penalty methods

The physical interpretation of the quadratic penalty method is simply the introduc-
tion of spring-forces in a mechanical system. By introducing the quadratic penalty
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functional associated to the constrained problem (1), defined as

1
[ =f(x) + Zg(x)Tg(X), ()

where ¢ > 0 is the penalty constant, we have transformed the constrained minimi-
zation problem (1) into the unconstrained minimization problem,

min f;(x). 4)

xeR"
If Vf.(x) is the gradient of f; of x this reduces to the problem of solving the nonlinear
system Vf,(x) = 0. The drawback is that we are solving a slightly different problem
than the original problem. If we denote the solution to (4) by x*, it can be shown
that x} — x* when ¢ — 0 (as shown in, e.g., [5]). Thus as we decrease the value of
the penalty parameter we approach the solution to the original constrained
problem (1). A difficulty with the penalty method is that the condition number of
the Hessian matrix, V2f,(x), for the unconstrained minimization problem (4) goes to
infinity as ¢ —» 0 [5]. We thus have a tradeoff between satisfying the constraints and
having a well-conditioned problem when using the penalty method.

1.3 Lagrangian methods
The Lagrangian functional associated to the constrained problem (1) is defined by
ZL(x, ) =f(x) + ATg(x). )

Here 1€ R™ is the Lagrange multiplier of the constrained problem (1). Again,
denote by x* the solution to (1) and by A* the associated multiplier. In the following
it is assumed that Vg(x*) has full rank, since this guarantees the uniqueness of the
Lagrange multiplier. If we differentiate the Lagrangian functional with respect to
x we have the following system of nonlinear equations,

{ny(x*, i*) =0,

6
g(x*)=0. ©

Using the definition of the Lagrangian functional (5), the equation system (6) can be
written as

VI (x*) + (Vg(x*))"2* =0,
{ X g(x )

g(x*) =0,

which is identical to Eq. (2). Relations (7) go back to Lagrange and are necessary
conditions for a solution to the problem (1).

A problem with this method is that, even though the original problem (1) has
a solution, the Lagrangian functional (5) can be unbounded, since the Hessian of
the Lagrangian functional, VZ, % (x*, i*), is not necessarily positive definite. An-
other problem with the Lagrange multiplier method is that the equation system (6)
for the case of time-dependent problems is a set of coupled differential and
algebraic equations which can be difficult to solve numerically.
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1.4 Augmented Lagrangian methods

The augmented Lagrangian method (sometimes also called the method of multi-
pliers in the literature) can be viewed as a combination of the penalty method and
the Lagrangian method. It was introduced as a computational tool in 1969, by
Hestenes [9] and Powell [12], as an attempt to solve the difficulties of penalty and
Lagrange methods that we have described previously.

The augmented Lagrangian functional associated to the constrained problem
(1) is

1
Zi(x, ) =f(x) + g(XV(g g(x) + /1>- ®)

The corresponding constrained minimization problem is then

{ mxin Le(x, 1), )

subject to g(x) =0.

It can be shown (see [5]) that there exist £ > 0 such that x* is the unconstrained
minimum of the augmented Lagrangian, Z,(x, A*), for all ¢ < &.

Since we do not know A*, the Lagrange multiplier at the solution, we have to
somehow approximate it. Instead of directly solving problem (9) it is possible to
only solve the minimization problem, holding the multipliers fixed, and then
update the Lagrange multipliers. This leads to the following family of iterative
algorithms.

Algorithm 1. Given i = 0 and an initial approximation 1, execute the following
algorithm:

1. Solve the unconstrained minimization problem,

min Z,(x, 4;) = Xx;.
xeR"

2. Update the Lagrange multiplier, 4; - 4;4;.
3. Have we converged to a solution? If not, set i =i + 1 and go to 1.

There are many possible choices for the multiplier update in step 2 in Algo-
rithm 1. In this work we have used the Hestenes—Powell update

1
Ait1 =/1.-+Eg(xi), (10)

which is classified as a first-order update. Another possibility is to use a second-
order update, such as

vy = i+ [Vg)T (Vi Zolxi, 4) 7 'Vg()] ™ g(xi). (11)
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These, and several other Lagrange multiplier update methods, are discussed in
a paper by Arora et al. [2].

1.5 A class of linear dynamical systems

The time-discretization schemes and their properties that we will describe in this
section were introduced in an article by Dean et al. [4].
The dynamical system to be considered is

{Mi&+Ax+C>& =1, )

x(0) = xo, X(0) = xy, x()eRY, te[0, T],

where M, A and C are real d x d matrices and T > 0 is a constant. The matrix M is
symmetric and positive definite, 4 is symmetric and positive semi-definite while
C is positive semi-definite. In structural dynamics M is usually denoted as the mass
matrix, since it is dependent of the mass and inertia of the dynamical system.
Similarly A is denoted as the stiffness matrix since it represents a force that is linear
in x. All three matrices are assumed to be constant in time. The right hand side, f(¢),
can be viewed as an external force or torque and is assumed to be piecewise
continuous in time for 0 <t < T. As usual, we have the notation
dx d?x

X=a—t and X:W

for the first two time derivatives of the dependent variable x.

1.6 An energy relation

Let(-,-)and |-| denote the standard scalar product of R?, and the associated norm,
respectively. For simplicity let us assume for the rest of this section that f(f) = 0.
Multiplying Eq. (12) by x, we obtain

(Mx, x) + (Ax, X) + (CX, %) =0,

- 5%((%&, X) + (Ax, x)) = — (Cx, x). (13)
If we introduce as energy functional for the system (12), E(¢), defined as
E(t) = 3((M%, X) + (4x, X)), (19
then Eq. (13) implies
E=—(Cx%<0, (15)

since C is positive semi-definite. This shows that Cx is a friction term that leads to
dissipation of energy in the dynamical system (12) over time. If C = 0 we have
E =0, and the system is thus energy conservative.
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1.7 A family of time-discretization schemes

The time-discretization of the dynamical system (12) is done by the following
schemes:

n+1 n—1_2 n
[ M +|zt|2 X LA™ 4 (1 — 2)x" + ax" 1)
xn+1_xn—1
M7 vt A
< RN (16)
x° = xo, AT = XU x"eRY, 0 <a<1/2,

\NAt=T, n=0,1,2,...,N — L,N.

Here x" ~ x(nAt), f" = f(nAt), o« is a constant and At > 0 is the time step. As we can
see, both X and x are discretized by second-order accurate approximations, while
x is discretized by a symmetric, weighted mean value. Observe also that the
fictitious point x ! is introduced to make the discrete approximation of the initial
velocity x; symmetric. Then system (16) reduces to the solution of a positive
definite, d-dimensional, linear system at each time step.

1.8 Stability properties

In the following we again assume that f(t) = 0. To examine the stability properties
of scheme (16), we first derive a discrete version of the energy relation (13) by
multiplying equation (16) by the discrete velocity to get

1 MAtxn+1_xn xn+1 —x" B MAtxn_xn—l xn__xn—l
2At A T Mt oA T M
N 1 Axn+1 + x" xn+1 + x" Axn+xn—1 X"+Xn_1
2At 2 ’ 2 2 ’ 2
n+1 _ . n—1 n+1 __ . n—1
- - (cx R TE ) (17)

which is the discrete counterpart of Eq. (13). Here we have introduced the notation

M3 =M + |At]* (@ — D A. (18)

Equation (17) implies that, if we choose C = 0, the energy function associated
with the discrete system (16) is constant (assuming that M4 is positive definite) and
equal to

1 xn+1_xn xn+1_xn xn+1 +xn X"+1+Xn
E,==|| M A . 19
" 2[( “ A At >+( 2 T 2 >:| (19)
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We see that the energy term is evaluated at the mid-point in time between nAt and
(n + 1)At in the discrete case.

It can now be shown [4] that the time-discretization scheme (16) is stable when

M3 = (M + | At (x — ) 4) (20)

is positive definite. If « > 1/4 then M2%' is clearly positive definite and the scheme is

thus unconditionally stable. If 0 < « < 1/4 then M4 is positive definite if, and only

if,
(M + At = HA)y, 1) > 0, VyeR\{0}. 1)

Since M ™! is well defined, this is equivalent to

(M~ 4y, y) 1
max < R 22)
yeri\foy (1, ) |At1*(1/4 — o) (
= At < -z (23)

Sl — 4a)

where 4,, is the largest eigenvalue of M ! A. So the scheme is conditionally stable
for 0 < o < 1/4, the stability condition being inequality (23). Note that if « = 1/4,
then M4" = M and the energy function for the discrete system (19) is of the same
form as the energy function of the continuous system (14).

1.9 A class of nonlinear dynamical systems

In this section we will consider a nonlinear variant of Eq. (12), namely
MXx + Ax + Cx + ¢(x) =f(t), x(0) = xo, X(0) = x;, ¢(x):R? > R* (24)

where we assume that the nonlinear function ¢ is diagonal, i.e.,

¢x) = Y dilxi)es, (25)

{e,-}',-i= 1 being the standard Euclidean basis in R?. In the rest of this section, repeated
indices do not imply summation. Then ¢(x) is the gradient of a function V(x)
defined by the following relations:

d do.(x:
V= ¥ ), gty = S0

 Bi(x) = j " p(0)de,

(26)
Vix):R! > R, andi=1,2,3,...,d.
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Taking the derivative of V' (x) with respect to time and using Eq. (26), we have by
the chain rule the relation

. do; dx;
(x)=——"=0,(x;)%, i=123,....d 7
gDl(-xl) dxi dt ¢l(xl)xla 1 ’ a3’ ;d (2)
And we arrive at the relation
&.(x
¢ilx;) = ,)(éx,), i=1,23,..,d. (28)

1

Equation (24) can then be written as

Mx + Ax + Cx + {(pi)(&Xi)}d =f(t), x(0)=xq, x(0) = x;. (29)
t Ji=1

To discretize the last term of the left hand side of (29), we use the scheme

1 dsi ;l+1/2 _ ¢i ?*1/2 Qi i+1/2 _ ¢i ?*1/2
ai 1(x 1 g n(—x1/2 ) =2 (x ,,+1) (_xl ), 0<i<d, (30)
a(xp T2 —xpT2) xXi = Xxi

where we again have discretized at the midpoints in time,

n+1 n n n—1
X + x _ X"+ Xx
n+1/2 _ and x" 1/2 _

X 2 2

The discretization of system (24) is then

xn+1 + xn—l — 2x"

[ M AP + A(ex" 1 + (1 — 20)x" + ax" 1)
n+1 _ . n—1 ¢i ;l+1/2 _(Di :1—1/2 d
FpC M, SRS G A Rl 16 M) Y
< 2At X — Xj i=1 (31)
x! —x71
x% = xo, AL = X x"eR’ 0 <a<1/2

\NAt=T, n=0,1,2,....N — 1N, ¢(x):R* > R?,

i.e., the same time-discretization scheme as (16) with the addition of non-linear
terms.

To derive an energy relation for the scheme (31), we multiply by the discrete
velocity,
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and get the same expression as in the linear case (17), except for the additional
potential term

1 +1/2 n—1/2
vids )=V ("] (32)

in the left hand side. If C and f are zero, we again have constant energy, and the
stability of the scheme can be shown under some mild restrictions on V(x). The
potential V(x) needs to be bounded from below by some constant feR, ie.,
V(y) = B > —o0, VyeR!(V(x)is then called proper). For such a potential V, it can
be shown that the same convergence results holds as in the linear case [4].

2 Double compound pendulum

In this section we will consider the dynamical system of a double compound
pendulum subject to inequality and equality constraints, respectively. The inequal-
ity constraints are treated by the penalty method while the equality constraints are
treated both by a penalty and an augmented Lagrangian method. We present
numerical results for both cases.

2.1 Equations of motion for the double pendulum

The motion of a double pendulum is a classical problem in Lagrangian mechanics
and often presented as an example of generalized coordinates. There exists no
closed form solution since the equations of motion are highly nonlinear. It can be
used as a minimal model of a robotic arm, simple in geometry but with complex
enough dynamics to make the study of the system interesting.

The geometry of the compound double pendulum that we will consider is
shown in Fig. 1. Link 1 is hinged at the origin of the coordinate system, O, and
connected to link 2 at joint A. Let subscripts i = 1, 2 denote the respective link,
then the location of the center of mass, C;, for a link is determined by the distance
a;. We assume that C, is located on the line connecting O and A. The pendulum
moves in a fixed plane, so it has two degrees of freedom. Its position is uniquely
determined by the two angles 6; = 0,(t), that each link makes with the x-axis. The
inertia of a link with respect to C; is denoted by I; and the mass by m;. We assume
a uniform gravity field in the direction of the x-axis with magnitude g.

The equations of motion for the system can then be stated using Lagrange’s
equations. Since the only force in this system, except for constraint forces, is the
uniform gravitational force, the system is conservative and Lagrange’s equations
are

d /oL oL
— — —_——= | = N h = —_ .
dt<60i> 20, 0, i=12, where L=T -V (33)

Here T denotes the kinetic energy, and V denotes the potential energy of the
system.
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Fig. 1. Geometry of the double compound pendulum

This gives us the two equations of motion, which are

d . .
a‘i[([l + mla% + mzl%)el + m2110202cos(02 — 01)]

— mzllazélézsin(ez - 01) + g(mlal + mzll)sinel = 0, (34)
d . .
a[(lz + mya3) 0, + myliaz0;cos(0, — 0;)]

— mzllazélézsin(02 — 91) + gmzazsinoz =0.

As can be seen, the equations of motion (34), are indeed highly nonlinear, due to
the presence of the terms 67 and the trigonometric terms in 0;.

2.2 Inequality constraints

Now we introduce an obstacle in the model, a vertical wall, parallel to the x-axis, at
a distance d from the fixed point of the pendulum as shown in Fig. 1. For the
moment we assume that only the tip of the pendulum, B, collides with the wall, thus
I, <d <l + 1,. If the wall is rigid, this can be seen as imposing an inequality
constraint, gg(0;, 0,) < 0, on the equations of motion. Since the distance, d, from
B to the wall can be written as d = [;sin0; + [,sin6,, the inequality constraint is
gg(01,05) =1ysinb; + l,sin0, —d <0.

To solve this constrained motion problem we use the penalty method, described
in Sect. 1.2, and introduce the potential energy

1
Ws =§;(g3(01’ 02)+)2’ (35)
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which is the quadratic penalty term. Here the function (-)" is defined as follows

(36)

s Jxif x>0,
xR, () _{o if x<0.

The above discussion has relied on the assumption that only the tip of the
pendulum, B, can be in contact with the wall. Including the possibility that the joint
A also can interact with the wall is easily done by introducing the additional
constraint g (01, 0,) = [;sinf; — d < 0, which we treat in the same way as we did
with the constraint gg(6;, 0;) < 0. An even more general approach would be to
define a function go(04, 6,) as

9ga(01, 0,) = max(x —d)”, (37)
pef

where @ is the body of the pendulum and p is a point with coordinates (x, y). For
simplicity we will only consider the constraint gp(0;,6,) <0 in the following
derivations.

Adding W, to V in Lagrange’s equations (34) we arrive at the following
equations of motion for the inequality-constrained system, together with initial
conditions for the position and velocity,

d R .
fE[(II + myad + myl3)0, + mylias0;c08(0, — 01)]

— mzllazéIGZSin(ez — 91) + g(mlal + mzll)sinel
l;cosf,

(Iysin, + I;sinf, —d)* =0,

.

d . .
ai[(lz + mya3)0, + mylyas0icos(0, — 01)] (38)

+ mylya,0,0,sin(0, — 0;) + gm,a,sin0,
l,cos6,

(llsinel + lzsinez - d)+ = 0’
\ 0:0) = 00;, 0:(0) = 6y;, i =1,2.

The reason for not expanding the time derivative, 4(.), is that we later want to use
that conservation form in the numerical method.

As we can see this is a system of coupled nonlinear differential equations of the
form

d . .
af}(eis 01) + gj(eia 01) = O l’] = 192- (39)
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To solve it we use the implicit time-integration scheme

(1 o B0 oot
—|felpnrriz 22 V) _ffgn-v2 22 TF
]

1 0t — 07 0 — 07!
g:lOopt12, X——— for-1v2 21— ))=0,
Slofr ) rar B0 w

0?:00i3 n= 1,273"" l’]: 1’2;

I,

\ 0! — 0; ' =2At0,; and 077,07 — (A

where 0;(t) is approximated by 67 and the velocities 0(t) are approximated by

o — ot . rrl_or
= 2 and 0i((n+1/2)At) x ———

0;((n — 1/2)At) = At AL

Here we have introduced the notation
ol 407 o+ ort
2 2 ’

+1/2 -1/2
Orz = and 0! Y%=

Again we introduce the fictitious point — At to approximate the initial velocity 0,;.

This scheme is similar to the scheme presented in Sect. 1.7 in that it also uses
a midpoint discretization, i.e., we discretize the equations of motion at time nAt by
approximating positions and velocities at the times (n — 1/2)At and (n + 1/2)At.

2.3 Numerical results

In this section we present some numerical results for the inequality constrained
motion of a double pendulum, obtained with the implicit time-integration scheme
(40), combined with the penalty method. All the physical parameters are listed in
Table 1.

To solve the nonlinear equation system (40) at each time step, Newton’s
methods was used. We choose to study a single quantity, namely gp(0;, 0,) as
a function of time, i.e., the distance from the tip of the pendulum, B, to the rigid
wall.

Table 1. Parameter values and initial conditions for the inequality constrained double pendulum

Parameter Value Parameter Value

01(0) —0.5236 [rad] 6,(0) — 1.0472 [rad]
6,(0) 0 [rad/s] 0,(0) 0 [rad/s]

a, 1.63 [m] a, 0.99 [m]

A 3.26 [m] I, 1.98 [m]

m, 67.1 [kg] ms 219 [kg]

I, 0.8134 [kg xm?] I, 0.8290 [kg x m?]

d 2.44 [m] g 9.81 [m/s?]




Constrained motion problems 87

AN A A /]

1
<
’
-
<
)
N
1

Fig. 2. Distance from the wall to the tip of the pendulum as a function of time for different & with
At = 10~ %. Dashed line for ¢ = 10~ 3, dotted line for ¢ = 10~7, and solid line for ¢ = 10~°. The solid and
dotted lines almost coincide with each other

Table 2. The maximum violation of the constraint for different

values of ¢
€ Penetration [mm] Penetration/(l; + ;)
10°3 130 0.025
10°° 36 6.87-1073
1077 11 2.10-1073
1078 3.63 6.93-1074
107° 1.16 221-107%

In Fig. 2, a comparison is made between simulations with different penalty
parameters, with the time step fixed. Here the solutions seems to converge when ¢ is
decreased.

In Table 2, the violation of the constraint, or the penetration of the wall, is
examined as a function of the penalty constant ¢. As can be seen in the last entry
of the table, we have to choose ¢ = 10~ ° to reduce the penetration to 10~ * of the
size of the pendulum. This is an example of the weakness of the penalty method.
To satisfy the constraints with high accuracy we have to decrease ¢. This can only
be done to a certain extent since for small enough ¢ we will run into accuracy
problems due to the finite precision computer calculations, as was noted in
Sect. 1.2.

2.4 Equality constraints

In this section we will constrain the motion of the pendulum by an equality
constraint. More specifically we constrain the tip of the pendulum, B, to move on
a prescribed curve. To make the motion interesting we apply a time-dependent
torque, t = (t), on the stationary joint, O. The curve we choose to constrain the tip
to is an ellipse. The configuration is shown in Fig. 3. Since we now apply a torque,
the system is no longer conservative and Lagrange’s equations are

—— | ——=0; | = . h L=T—-—YV
di <801> 601 Q“ 1 1, 2, where 5 (41)
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A

Fig. 3. The geometry of the equality-constrained pendulum

where Q; are generalized forces corresponding to 6;. In this case the generalized
forces are

Q=7 and Q,=0. (42)

The stationary joint, O, is located on the ellipse. The constraint that the tip, B, is on
the ellipse can be stated as

(x2 — xo)2 (y2 — J’o)2

=1, 43
c? + d? “3)
where (x,, y,) are the coordinates of the tip of the pendulum, B. We rewrite this in
terms of the generalized coordinates as

1 0 I 0, —x0)*> (I;sin0 I,sin0, — y,)?
g(01,02)=(lcos 1+ z;:os 5 — Xg) +(lsm 1+ ;jm 5 — Yo) B

1=0,

(44)

which is the equality constraint on the motion of the pendulum.

For the augmented Lagrangian method we will use the multiplier update
algorithm introduced in Sect. 1.4, discretized in time in the same way as we did for
the inequality constrained problem (40).

2.5 Numerical results

All parameters used in the numerical experiments are listed in Table 3. The torque
we choose to apply is defined by

r=r(t)={_30 for 0 <t <4, 45)

0 fprt>4.
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Table 3. Parameter values and initial conditions for the equality constrained double pendulum

Parameter Value Parameter Value
0:(0) 2.271 [rad] 0,(0) 0.6591 [rad]
0,(0) 0 [rad/s] 0,(0) 0 [rad/s]
a, 0.5 [m] a, 0.25 [m]
Iy 1.0 [m] I, 0.5 [m]
m; 10 [kg] m, 5 [ke]
Iy 0.8333 [kg x m?2] I, 0.1042 [kg x m?]
Xo 0.25 [m] Yo 1 [m]
c 1.155 [m] d 0.5 [m]
9.82 [m/s?]

Table 4. Comparison between penalty and augmented Lagrangian methods for the equality-con-
strained double pendulum

Quantity Penalty Augmented Lagrangian
At 107° [s] 5-1074 [s]
€ 10°¢ 10°¢
max | g5(01(2), 0>(1)1 228-107* 1.34.107°
No. of multiplier iterations
per time step (mean) — 40
Total CPU-time (SUN Sparc-2) 56 [min] 3.2 [min]

In Table 4, we list the parameters and results for both the augmented Lagran-
gian and the penalty methods. As can be seen, the time step is much larger for the
augmented Lagrangian. This is because the penalty method failed to converge for
larger time steps. Due to this fact, the execution time for the augmented Lagrangian
is an order of magnitude faster than the corresponding time for the penalty method,
although we have to make approximately 40 multiplier iterations at each time step.
Also to be noted is the fact that the maximum penetration is an order of magnitude
less in the case of the augmented Lagrangian compared to the penalty solution.

We choose to represent the motion of the pendulum by the y-coordinate of the
tip. If we compare the penalty solution with the augmented Lagrangian solution,
we can see that they are quite different (Fig. 4). The penalty solution seems damped
and smoothed out compared to the augmented Lagrangian solution.

This is even more evident if we examine the total energy of the pendulum,
T + V, as a function of time. We would expect the energy to have a periodic
variation during the four first time units, since we then are applying torque. After
four seconds the energy should remain constant, since the torque is zero and
therefore the system is conservative. As seen in Fig. 5 the augmented Lagrangian
solution approximately satisfies these conditions, while the penalty solution is
irregular during the first four seconds, and damped after that.

The conclusion is that the penalty method does not give a satisfactory solution
to this equality-constrained problem, neither in terms of accuracy and nor in terms
of execution time. The augmented Lagrangian method on the other hand, performs
fast with small violations of the constraint.
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Fig. 4. The y-coordinate for the tip of the pendulum as a function of time. The solid line represents
a solution by augmented Lagrangian and the dotted line a solution by penalty

100 T T T T T T T

80 1

I

1

1

1

2

3

4

5

6

7

8

Fig. 5. The total energy of the pendulum (T + V') as a function of time. The solid line represents
a solution by augmented Lagrangian and the dotted line a solution by penalty. The energy for the free
hanging pendulum is — 110.475 for comparison

3 Motion of colliding strings

Consider two strings, U and V, allowed to move in a plane, both with one end fixed
at a point 4, and the other end fixed at a point B, as shown in Fig. 6.

The strings are not allowed to penetrate each other, that is they do not cross
when they collide. Friction forces are neglected, so the collisions are assumed to be
elastic. We define an x-axis to coincide with the line from A to B, with x =0
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A Fig. 6. The configuration of the two
strings

corresponding to 4 and x = 1 corresponding to B. The notations we will use for
a function w = w(x, t) are as follows:

0w . Ow ow 0*w

= W=— W, = — = .
T ox] ox?

ot?’ ot

Assuming that the strings’ amplitudes of vibration are small compared to unity, we
ve the following two wave-equations, coupled by a constraint,

[ piit — Ty =0,

p2b — To0 =0,

< u>v, u0,t)=u(l,t)=0v0,t) =v(1,t) =0, (46)
u(x, 0) = ug, v(x,0) = vy, ug > vy on (0, 1),

u(x, 0) = uy, v(x,0) =0y,

\0<x<1 t>0,

where u = u(x, t) and v = v(x, t) are the respective displacements of the strings,
perpendicular to the x-axis. The parameters p; denote the respective string linear
densities and 7; the tension for i = 1, 2. The linear densities and the tension are
assumed to be constant for clarity, but the methods that will be presented can easily
be modified for nonconstant parameters.

We must choose how to treat the inequality constraint u > v in (46). For this
problem our approach will be that of penalty with a careful time-discretization of
the penalty term. We include the constant in the equations of motion by means of
a quadratic penalty function, H,, defined as

H,(w) =%(W+)2, H.:R - R, (47)

where ¢ > 0 is the penalty parameter and the function (-)* was defined earlier in
Eq. (36). Taking the derivative of H,,

d 1 :
H;(W)zd_wHe(W)=;W+9 (48)
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and using this to introduce the penalty function in (46), we have the initial-value
problem,

fplu — Tilxx = H;:(U - u)’
pli} — TUxx = — H;(U - u),
u0,t) =u(l,t) =v(0,t) =0v(1,t) =0,

u(x, 0) = Ug, U(X, 0) = Vg, Ug > Vo,

—

(49)

ll(x, 0) =Uq, lj(x, 0) =0y,
\0<x<1,t>0,

where the constraint, u > v, now is implicitly contained in the penalty terms
H(v — u). We now use the same method as in Sect. 1.9, to rewrite a derivative of
a potential function, H;(v — u), as a time derivative by noting that

mw—m=%Hm—m=Hm—mw—m. (50)

Inserting this result in problem (49), we have the initial-value problem

( H,(v — u)
plu - Tluxx e —

- , or=01f o=u,
U.—u
. _Hg(v—u)

P2V — Talxx = b—au
<MQO=MLO=NQQ=MLG:Q (51)

u(x, 0) = uo, v(x,0) = vy, Uy > vy,

, or=01if v=u,

d(x, O)ZUX, lj(x, 0) =70,
\0<x<1, t>0.

3.1 Space discretization by a finite element method

We now present a discrete formulation of the initial-value problem. First we
discretize problem (51) in space by a finite-element method. To avoid duplication of
all the derivations, we will sometimes only consider the formulation for the string
u(x, t) but the same applies for v(x,t), unless otherwise stated. We divide the
interval [0, 1] into I intervals of equal length and define

x; =ih where h =%, i=012..,1I.

We also introduce the finite-element space,
/Vh = {Uhlvhe CO[O, 1], vhl[xi,x;+1]epl N
Vi=0,1,....,1 — 1;v,(0) = v,(1) = 0},
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where P, is the space of polynomials in one variable of degree < 1. We can note
that dim ¥, = I — 1. We also define a vector basis, 4,, of ¥}, by

'@h: {W,}{;ll, WiEVh, Wi(xj)zéija Vj=0,1,...,1, Vi= 1,2,...,1— 1.

We then can express the elements of ¥7 in the basis %, by

I-1
Up = Z vn(x))wi, Vo, €45
i=1
Now we can construct a finite-element approximation of the continuous prob-
lem (49). It follows from (49) that

1 1 1
le iy dx + TIJ‘ UsYiedx — J H;(v — u)y,dx =0,
0 0 (52)

0

YV yn€ ¥y, u(x,0) =ug, u(x,0)=u;, t>0.

Approximating u(x, t) with u,(t) in the basis %,
I-1 I—-1

uy(t) = Z un(x;j, yw; = Z uj(yw;,

i=1 i=1

and integrating the second integral by parts, we have
I-1

-t ! . 1dWide
p1 Y <L wiwjdx>u,- + 14 Z (J;) I E;dx)uj

j=1 j=1

! (53)
—J‘ H’e(vh—uh)widx=0, Vi:1,2,3,...,1—-1,
(]

uj(()) = Uj 0, 12](0) =Uj 1, t> 0.

If we use the trapezoidal rule to evaluate the integrals and calculate the equation
for v in the same way, we have (now including v)

/

i=1

H.(v: — u)) It
8.(1)1 ul)} =0,

plU;,-i-‘L'lAhUh—{ ;
U; — U;

& Hs(vi —u;) -1
< P2V + T2 AWV, + {W}i—l =0, (54)

Un(0) = Uon, Vi(0) = Von, (Uon)i > (Von)s,
\Un(0) = Upp, Vi(0) = Vi, i=1,2,...,1 -1,
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where the penalty term was time-discretized before the integration. Here we have
introduced the vectors U, and V,, and the matrix 4,, defined as

2 -1
-1 2 -1 0
Uy
1 -1 2 -1
Uh = u_z and Ah = F .
) -1 2 -1
- 0 -1 2 -1
-1 2
(55)
The notation for the initial-conditions is
uo(h) uy(h)
uo(2h u(2h
Uow = 0(. ) and U, = 1(. ) (56)
uo((I — 1)h) u((I — 1)h)

The fact that the mass matrix reduces to the identity matrix when we apply the
trapezoidal rule is sometimes called mass lumping. If the first integral in Eq. (53) is
evaluated by other means then by the trapezoidal rule, e.g., exactly, the mass matrix
will be a tri-diagonal matrix.

3.2 Time-discretization by a finite difference scheme

Let us now consider the discretization in time. We introduce the notation

un+1 + un
u" ~ u(x,nAt) and u"*l? = — (57)
with similar notation for v, and
Hg+1/2 =H5(U”+1/2 —M"+1/2), (58)

where At > 0 is the time step and n = 0, 1,2, ... The second order time derivatives,
u and ¥, are approximated by the second-order accurate scheme,

un+1 + un—l —2u"

i(x, nAt) ~ I )

(59)
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the first order time derivatives, ¢ and v, are approximated by the second-order
accurate scheme

i(x, nAt) ~ 2 (60)

while the second order space derivatives, u,, and v,,, are approximated, in time, by

Upe(X, nAL) x osi T + (1 = 20)ul + o, 0<a<1/2, (61)
and the penalty term, H,, is approximated by

. Hn+ 1/2 Hn—1/2
H, (v — u)]; —pat ® = At = .

(62)

The scheme is unconditionally stable (with respect to At) for o > 1/4, as we showed
in Sect. 1.5. We have chosen the value 1/4 in our numerical experiments since it has
good energy-preserving properties.
We also use the starting procedure
1 -1
u' —u
u(x, 0) x ————,
(x. 0) 2At
where we again have introduced the fictitious point —At.
Using these time-discretizations together with the space-discretization in (54),
we have the following solution scheme.

Assume that Up and U} are known,
then for n = 1,2,3, ..., with U}~ !, U} given, compute U} ! by solving the follow-
ing system of nonlinear equations,

fp Ut + Uyt - 20
' |At|?

_1 (U?+1/2—u?+1/2)+2-‘(v?_1/2—M?_1/2)+2 I-1
P W A A By

< yitt 4yt _2vy

— T AUl + (1 = 20) UL + aUR™ 1Y)

=O,

i=1

P2 |At|2 — ‘L'zAh(OCVZ+1 + (1 — 20() Z + O!VZ_I) (63)

+1 (U?+1/2—u?+1/2)+2—(U?_I/Z—U?_1/2)+2 I-1
) A A B Rl

=0’

i=1
Up=Uon Vi = Vo (Uon)i > (Vou)i»
\i=12..,1-1,

where U} is given by solving (63) for n = 0 using

U,' 2 U; —2AtU,, (64)
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and where the vectors U} and V' are defined as

ur=| - |, (65)

and A, Uok, Von, Uin, Vip are defined as before in (55) and (56).

The resulting system of equations (63) that has to be solved at each time step is
nonlinear with 2(I — 1) unknowns.

3.3 Numerical results

In this section we will present the result of a numerical experiment with scheme
(63). The parameters used in the experiment are as follows:

(pl =p2= 1’
Ty =Ty = 1,
< e=107°6, 66)
At = 1074, (
a=1/4,
\I =100,
and the initial conditions are (shown in Fig. 7a)
Ulh = Vlh = O,
Uor); = 0.02sin(tih),
(Uon) (tih) 67)

(VOh)i = — 001 Sin(27tih),
i=12,..,1—-1.

The system of nonlinear equations (63) arising at each time step was solved by
Newton’s method. The test case solved numerically showed a good performance of
the described method using the time-discretized penalty term, although the time
step had to be chosen quite small (At = 10™%) to capture the sometimes violent
motion of the strings.

At 0.35 time unit (Fig. 7b) the strings collide, and it is interesting to see that, at
least from inspection, the strings motion coincide with the motion of two uncon-
strained strings. We have total symmetry at time 0.5 as shown in Fig. 7c. After
1 time unit the configuration is symmetric with the initial configuration, but V is
now the string of maximum displacement.

The maximum penetration (violation of the constraint) was 1.0-107° or 0.05 %
of the maximum displacement for this experiment.



Constrained motion problems 97

0.02

0.00K

0.02 .

0.00

0.02 -

0.00

-0.02 =

¢ 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7. a The initial configuration. b The configuration after 0.36 and ¢ after 0.50 time unit. The solid
line is the string U, and the dashed line is V. Observe the different scales

4 Large displacement of beams

In this section we will treat the problem of calculating the motion of largely
displaced beams. This is an equality-constrained problem where the constraint is
that the beam is supposed to be locally inextensible. The theoretical part of the
presentation is based on Bourgat et al. [3] and Glowinski and Le Tallec [7], where
the authors treat the constraint by an augmented Lagrangian method and use
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M(s)

Beam

B Fig. 8. Sketch of the configuration of the beam

a dissipative Houbolt scheme for the time-integration. In this section we introduce
the energy-preserving scheme presented in Sect. 1.5, instead of the Houbolt scheme.
We also treat the problem by a time-discretized penalty method in addition to the
augmented Lagrangian method.

The theoretical background for the static case is presented in Sect. 4.1 and for
the dynamic case in Sect. 4.5.

4.1 Analysis of the static problem

The geometry of the problem is shown in Fig. 8 and the assumptions concerning
the mechanical behavior of the beams are as follows:

— torsional effects are neglected,

— the diameters of the beams are small compared to their length L, so that the
cross-sections remain undeformed,

— the beams are inextensible, and

— the beams are flexible so that they obey a linear strain-stress relation.

We also introduce the following notation:

— A and B are the extremities of the beam,

— sis the curvilinear abscissa with s(4) = 0 and s(B) = L, where L is the length of
the beam, and

— M((s) is the generic point of the beam with coordinates x(s).

4.2 Problem formulation
For the static case we can express the total potential energy of the beam J as

L

1 L
J(x)zzj EI|x”|2ds—j f-xds, xeV, (68)
0

0

where the first integral represents the flexural (bending) energy and the second
integral the potential energy due to external forces. Here f denotes the linear
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density of external forces, EI the flexural stiffness of the beam, and x’ and x” the
first and second derivative of x with respect to s. We then have to solve the
following local minimization problem in order to find the stable equilibrium
positions for the beam,

min J(x), (69)

xeV

where the set V is defined as
V = {v|ve H*(0, L; R*), |v'(s)] = 1 on [0,L], plus boundary conditions} .
(70)

Here |v'(s)| = 1 is the inextensibility condition on the admissible solutions. The
Hilbert space H?(0, L; R*) is defined as usual by

H?(0,L; R®) = {v|v,v,v" e L*(0, L; R%)}. (71)

The boundary conditions in (70) are that both ends of the beam are fixed in
space,

x(0) = x4, x(L) = xp, Xg4, xpeR?, (72)

or that the ends are fixed and also clamped,

{X(O) =Xy, X(L) = Xg, X4, Xg€ R3, (73)

X'(0) = x4, X'(L) = X5, X4, x5eR>, [X,]| =|xp| =1,

or a combination of (72) and (73).

The minimization problem (69) has a long history. Setting f = 0 gives us Euler’s
Elastica problem, where for every solution we also have the symmetric solution by
reflection in the line from A to B. This is one example of the nonuniqueness of the
solutions to (72). If we choose EI = 0 and f constant, the solution is a catenoid
curve. Concerning the existence of solutions to the general minimization problem
(69), it can be shown [1] thatif | B — 4| < L, then (69) has at least one solution, that
in general is nonunique.

4.3 Penalty method

We will only treat the fixed-end boundary condition (72), the extension to clamped-
end boundary conditions (73) is easily made.

Again the idea of the penalty method is to satisfy the inextensibility condition,
[x'(s)| = 1, as well as possible by including the quadratic penalty term in the
expression for the total potential energy (68). So instead of solving (69), we solve
the slightly different problem,

min J,y(x). (74)

xeV,
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Here we have introduced the affine space
Vo = {v|ve H*(0, L; R*), v(0) = x4, v(L) = X3}, (75)
associated with the boundary conditions (72). The functional J, is defined as
1 L L L
J(x) = Ej EI|x"|*ds — J f-xds + J pH,(|X'(s)]> — 1)ds, xeV,, (76)
0 0 0

where the penalty function, H,, is defined as

1
H,(w) = sz, weR, (77)

with ¢ > 0 being the penalty parameter. Solving for the stationary solutions of (76)
by the calculus of variations gives us the following Euler-Lagrange equations

L L
f EIX"-y"ds —J f-yds

0 0o

L
+ 2J PH(IX(5)? = 1)x'-y'ds =0, VyedVo(x), (78)
0

where the tangent set, dV(x), of admissible variations is defined as
dVo(x) = {ylye H*(0, L; R*), y(0) = y(L) = 0}. (79)

In order to solve the problem (78) by finite-element methods, a suitable approxima-
tion of H*(0, L; R?) is needed. If we introduce the partition {s;}}-, of the beam,
such that

0=SO<SI <8y <Si—q <S,~<Si+1 < --- <51=L
then we can approximate H2(0, L; R®) by the finite-dimensional ‘space
Vi= {Vhecl([O, L] R3)|vh|[s,»,s,~“]ep3(5i> si+1)Vie[0,I — 1)}-

Here vy, s,,,7 18 the restriction of v, to the interval [s;, 5;+1] and Py(s;, si+1)
denotes the set of polynomials in s with coefficients in R* and of degree less than or
equal to k. For future use, it is convenient to also introduce the spaces,

Von = {ve V3| v(0) = x4, V(L) = Xp}
and
dVon = {ve V,|v(0) = v(L) = 0}.

We have that V, = H*(0, L; R3) and that the dimension of Vy, is 6I. The finite-
element representation that V), corresponds to is said to be of Hermite cubic type,
and the associated degrees of freedom are

{vh(si)}{=0 and {VZ(S.') {=0o
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If we assume boundary conditions of the type (72), the finite-dimensional
formulation of (78) is

L L
J EIx”-y”dshf f-yds

0 0

L
+2J PH.(IX'(5)|* — 1)x'-y'ds =0, VyedV,,, xeVo,. (80)
0

This is clearly a nonlinear system of equations. To evaluate the integrals in (80), we
used Gaussian quadrature.

4.4 Augmented Lagrangian method

Here we will use the augmented Lagrangian method together with a decoupling of
the nonlinearity of the inextensibility condition by introducing new variables,
coupled to the old ones by linear equalities. Here the natural choice is to define
a new variable p = x". First we introduce the augmented Lagrangian functional
associated with J and the inextensibility constraint as

1
zﬂxmm=JW%qu—yW+EM—YP&meewaWH, (81)

with the Hilbert space H = L?(0, L; R*) and its usual scalar product (-,-) and norm
|-, V' is defined as before with the boundary conditions (72), ¢ > 0 is the penalty
parameter, u is the Lagrange multiplier function.

Problem (69) can then be stated as the saddle-point problem

Find {x,p; A} e(V x H)x H such that
L, pu) < Zo(x, p;4) < Loy, q; 4), (82)
V {y,qule(VxH)xH.

It can be proved [7] that the solutions to (82) are also solutions to our original

problem (69), if (82) is considered as a local saddle-point problem. To solve the
problem (82), the following algorithm of Uzawa type ([6]) is used.

Algorithm 2. 2°¢ H and x~! given; then, for n >0, 4" and x"~! being known,
determine p”, x", and 4"*! successively by

L(x"TLpL A" < L(x" L, qp AN, VqeH, p"eH, (83)
L(x", p" ") < Loy, ph A"), VyeV, x"eV, and (84)
A= 24 p((x") —p"). (85)

To obtain p” in (83), we have to solve the minimization problem,

min Z,(x""1, q; 4"),
[ql =1
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and the solution is

P 1
p'l = B Whel‘e P(S) = A’n —_ _(Xn— 1)/ . (86)
IP| ;

Using the calculus of variation of minimization problem (84) can be stated as the
equivalent problem

Find x"eV such that

L 1
f [El(x")”~y” + ;(x”)’ . y’] ds (87)

0

L 1
= f [f-y + <l" +Ep">~y'}ds, VyedV(x").
[}

The finite-element approximation of (87) can be obtained by replacing V with
VnV,, giving us three, independent, linear systems of order 61 (order 6(I — 1) if we
have boundary conditions of type (73)), with the same bandmatrix (bandwidth 7)
which is symmetric, positive-definite and independent of I if ¢ is fixed. That means
we only have to do a Cholesky factorization once, thus each iteration consists of
solving six sparse, triangular, systems.

4.5 Analysis of the dynamical problem

Here we introduce the following notation:

) = x(5. 1), X' 0x < ox |, 0% and 0*x
X = = — =—, X = — X = ——.
>t os’ ot’ 0s?’ ot?

By a virtual work principle ([7]), we have in the continuous case the initial value
problem:
Find x:[0, T] — V, such that

L L L
J pi-yds+J EIx”~y”ds—f f-yds=0,
0 0 0 (88)

VyedV,(x), te(0, T), x(0) = xq, x(0) = x; .

The set V, is defined by
Vi=1{ylye H*(0, L; R®), |y'(s)| = 1 on [0, L];

¥(0) = x,(t) and y(L) = x,(1)},
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and
dV,(x) = {ylye H*(0, L; R®), X'(s, 1)-y'(s) = 0 on [0, L];

y(0) = y(L) = 0}.

4.6 Penalty method

Applying the penalty method to Eq. (88), we have the initial-value problem:
Find x:[0, T] = V,, such that

L L L
J pi-yds+f EIx”-y”ds—J f-yds
0 L 0 0
£2[ PHAXOP DXy ds=0 VyedVal, ()
0
te(0, T), x(0) = xq, x(0) = x,.

where

dH,
dw

Hy(w) = , weR.

The set Vy, is defined by
Voo = {ylye H*(0, L; R®), y(0) = x,(¢) and y(L) = x,(1)},
and
dVo(x) = {ylye H*(0, L; R*), y(0) = y(L) = 0}.

Again we will use a time-discretization of the penalty term. Taking the time
derivative of H,(|x'|*> — 1), we have that

%He(lx'l2 —1)=H(x]> = 1) = H(x > - 1)2x'-X . (90)

Using this result in (89), we have the initial-value problem:
Find x:[0, T] — V, such that

L L L
f pi-yds+f EIx"-y"ds—J f-yds

0 0 0
L

+LpHﬂr@P—nx

/.y/
.X,ds=0 VyedVo(x), (91)

’

te(0, T), x(0) = xq, x(0) = x;.
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The finite-difference approximations that we use are as follows:

+1/2 -1/2

H"z——iH: CoHTY

& At 2
xn+1+xn—1_2xn
|At|? ’

%(nAt) ~

X" (nAt) ~ (@x"*' + (1 — 20)x" + ax"" 1), 0 <o < 1/2, and

(xn+1 + Xn—l)/

x'(nAt) ~ 5 ,

where

Xn+1 +

X" = x(n0), X2 =2 X HU2 = H(IX((n + 1/2)A0 — 1).

Now we can formulate the discrete problem corresponding to (91) as the following
sequence of static type problems:
x’e V;is given for j = 0,1;

then, for n > 1, assuming x’ e V;are known for j = n — 1, n, we obtain x"* leV,i
as the solution of:
Find x"* eV, such that

L
J\ p (xn+1 +Xn—l —2X")'de
(]

| At|?
L L
+J El(ax""! + (1 —2a)x"+ax"‘1)”~y”ds—J f-yds
< o 0 (93)
L n+1+xn71)l.y/
HIF 2 2 x ds =0
+j0 ,0( )(xn+1 +X"_1)I-(Xn+1 _xn—l)l S

\vyEan+l(Xn+1)s te(oa T)’ X(O):Xo, X(O):Xl

Here V, . is Vy, at time (n + 1)At.
We also need a starting procedure to compute x!. For that purpose the
approximation,

x!' —x!

x(0) = x, %T,

94)
is used, where the fictitious value x ! = x( — At) is introduced. Since x° = x,, is
known and x ! is given by (94), we can use (93) to compute x'.

The problem (93) is similar to the static problem treated in Sect. 4.3 and can be
solved by identical methods; x° is also obtained by the solution of a static problem.
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4.7 Numerical experiments

The parameters for the experiment presented below are as follows:

(N =20,
e=15-10"4,
L=326m,
dt =0.01s, 95)
EI = 700 N/m?2,
p =17.67kg/m, and
\ &= 1/4.

The initial velocity, x; = 0, and the boundary conditions are of the type (72), with
X, = (0,0) and x, = (20, 0) at time t = 0. The starting position, X, is the equilib-
rium position corresponding to the boundary conditions, obtained by solving the
static problem. For times ¢ > 0 the extremity A is held fixed at x, = (0, 0), while the
other end of the beam B is allowed to fall freely.

As we can see in Fig. 9a during the first five seconds the motion is smooth, but

after approximately seven seconds a shock wave is propagating from B to
A (Fig. 9b).
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b -20 -10 0 10 20 between plots
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4.8 Augmented Lagrangian method

Again we have the initial-value problem:
Find x:[0, T] — V, such that

L L L
j pi-yds+j EIx"-y”ds—f f-yds=0
0 ° ° (96)
VyedV,(x), te(0, T), x(0) = x4, x(0) = x,,

where V, and dV,(x) are defined as before.

Using the same finite-difference approximations as in the penalty case, we can
formulate the discrete problem corresponding to (96) as the following sequence of
static problems:

x/e V;is given for j =0,1;
then, for n > 1, assuming x’ e V; are known for j = n — 1, n, we obtain x"* leV, i1

as the solution of
Find x"*!' eV, such that

Lop
j |At|2(xn+l +x""1 —2x")-yds
0
L

L
+J El(ax"*1! +(1—2a)x”+ocx"'1)”-y"ds—f f-yds=0 (97
0 0

vyEan+1(xn+1)a tG(O, T)’ X(O) = Xo, X(O)=X1

The starting procedure is the same as for the penalty problem (94).

The problem (97) is similar to the static problem treated earlier and can be
solved by identical methods (Algorithm 1).

If f is dependent on x we can treat f explicitly by f = f(x", x"~!) to keep the
linearity of the Uzawa algorithm.

_10:.

—20 —_

-30

b b b I 13 Fig, 10, The motion of the beam for
—-20 -10 0 10 20 5 <t <10, with 0.1 s between plots
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4.9 Numerical experiments

Here we have the same parameters, boundary conditions and initial conditions as
in the problem solved by a penalty method in Sect. 4.7.

In Fig. 10 we can see that the motion is much smoother than for the penalty
solution, and the violent motion after seven seconds does not appear.

5 Conclusions

In this work we have presented several methods for solving constrained motion
problems and we have applied these methods for the solution of some test
problems. An important part has been the implicit time-discretization scheme with
energy-preserving properties. This scheme and variations of it have performed well
in the numerical experiments and seem suited for the special ability demands of
constrained motion problems.

The problem of incorporating the constraints in the equations of motion have
been treated by penalty and augmented Lagrangian methods. It was seen that the
augmented Lagrangian method is superior to the penalty method in terms of
accuracy for all test cases. This does not mean that there are no cases where the
penalty method is an acceptable choice. For cases when the motion is smooth, in
the sense that the constraint forces are small, the penalty method was seen to
perform well. This was especially true for the time-discretized penalty method
which seems to increase the stability of the penalty method. Examples of this
are the inequality-constrained double pendulum and the problem of two colliding
strings. The advantage of the penalty method is its simplicity and speed, although
in some cases the need for excessively small time steps for acceptable accuracy
of the solution made the penalty method much slower than the augmented
Lagrangian method. This was the case for the equality-constrained double
pendulum.

The methods presented in this work can be seen as a robust set of tools for the
solution of constrained motion problems as have been shown for the various test
cases presented. The augmented Lagrangian method combined with the implicit
time-discretization scheme was found to give accurate solutions to both finite-
dimensional and continuous constrained motion problems.

As an example of a real world problem, let us mention that a constrained
motion problem for the SRMS (Shuttle Remote Manipulator System) was success-
fully solved with the described augmented Lagrangian method combined with the
implicit time-integration algorithm. The problem was to geometrically constrain
the motion of the end-effector of the space shuttle’s robotic arm, and the algorithm
was incorporated in the existing software for simulating the dynamics of the SRMS,
see [10] for more details and further numerical experiments.
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