76 Numerical Analysis

CMSSL conserves storage and enhances load balance by storing
each conjugate-symmetric sequence in N/2 complex numbers. In
the case of multidimensional transforms, the fact that two real
sequences are stored in one complex number after the transform
along the first axis results in some interesting alternatives for the
storage of data for subsequent transforms.

In short, each new dimension transformed generates two new
mingled conjugate-symmetric sequences, mingled since they have
been transformed with ordinary complex sequences. A method
has to be found that, in a manageable way and in-place, unmin-
gles and stores these two new sequences of wave-numbers in the
same amount of space as any of the wave-numbers of their com-
panion complex sequences require. The following method has been
implemented: for each transform after the first, store elements of
the two conjugate-symmetric sequences in a fashion such that the

position in the array gives the wave-number for one or the other
sequence. [Thi 1993]

9.2 Parallelizing the Fast Wavelet Transform

Mats Holmstrom
TDB, Uppsala University

The interest for wavelets and wavelet techniques has grown enor-
mously over the last few years, both in theoretical and applied
areas. In image compression wavelets are used as an alternative
to Fourier techniques. In numerical analysis wavelets are used for
solving integral equations and partial differential equations. To
understand the basic properties of wavelets it is of value to make
a comparison of similarities and differences between wavelets and
the more familiar Fourier basis.

If we have a time dependent signal and want to gain informa-
tion about its frequency content, the standard solution is to use
the Fourier transform. Omne drawback of the Fourier transform
is that we do not get any information about where in time these
frequencies are located. A short pulse cannot be located in time
by examining the Fourier spectrum of the signal. In signal anal-
ysis one usually solves this problem by using a windowed Fourier
transform.

Wavelet analysis provides another approach to this localization
problem by using basic building blocks that are smaller for higher



10 T T T T T T T
o
10" F o 1
X
% +
o X
10°F * E
) o x
° +
£ *
= ° X
10 %
X
X
% ¥ &
1 +
4
10°F o E
10‘3 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10 11
log2(N)

frequencies. These building blocks, or basis functions, obey a re-
lation of the following type

Y p(x) = 2792277z — k).

All basis functions are scaled and translated versions of a single
mother wavelet, ¥(x). The scaling corresponds to index j and the
translations to index k. We can then represent a function as a lin-
ear combination of these basis functions, f(z) & >_ ., b;r¥jx ().

Since we usually deal with sampled values of functions, i.e. we
know a functions values f(z) at certain points x;, i = 1,2,..., N,
we need an efficient way of calculating these wavelet coefficients
bk, given the function values f(z;). The algorithm for doing this is
called the Fast Wavelet Transform (FWT). The time for executing
the FWT on N points is proportional to N. This can be compared
to the Fast Fourier Transform which has an execution time that
is proportional to N log(N).

When using wavelet methods on large scale problems the time to
execute the FWTs can be prohibitively long, although the FWT
has a linear time complexity on sequential computers, as noted
above. One solution is to use massively parallel computers, but

Figure 9.1. Comparison of ex-
ecution times for some two-
dimensional FWT algorithms. The
FWT is done in three stages on
a square with N? points. Legend:
‘o’ a sequential algorithm on a Sun
SPARC-10; ’+’ Algorithm 1; ’x’
Algorithm 2; '+’ Algorithm 3. All
three algorithms were executed on a
CM200, configured with 128 FPUs.

Numerical Analysis 77



78 Numerical Analysis

we are then faced with the problem of constructing an efficient
FWT algorithm for such computers.

The reason for the need of different algorithms for parallel com-
puters is that new considerations, such as communication time has
to be taken into account when constructing parallel algorithms.
In CMFortran the elements of an array are distributed on the
processors according to a virtual grid. It is desirable to reduce
the amount of communication between the processors by trying
to make the computations local. When we need communication
we prefer NEWS-communication (shifting the whole array on the
virtual grid) since it is fast on the CM.

Taking the above communication considerations into account,
two new algorithms for doing the FWT on a CM were constructed,
and compared in execution time with a previously published al-
gorithm. The first new algorithm provided a speedup by a factor
of two and is suited for parallel computers in general (actually it
is also suited for sequential computation). The second new algo-
rithm uses a feature of the CMs hypercube topology: the ability
to quickly shift arrays by a distance that is an even power of two
and achieved a speedup by a factor of four compared to the previ-
ously published algorithm. In Figure 9.1 the execution times for
the three algorithms are presented. Note that the test problem
is two-dimensional. This does not present a problem, since when
we have an algorithm for the one-dimensional FWT it is easy to
extend it to two or more dimensions.

A great help when programming on the CM200 is the debugger
Prism. By using Prism one can, in addition to debugging facili-
ties, get timing information on a per-line basis, thus allowing the
programmer to evaluate the communication and computation cost
of each individual CM Fortran statement as well as statistics for
the whole program.

The two new algorithms for the FWT on the CM shows that it
is possible to implement an efficient FWT on the CM200. There
still remains a lot of work to be done in terms of testing and fine-
tuning, and the ultimate goal should be to provide an efficient and
robust “black-box” FWT algorithm on the CM200, much like the
FFT algorithm that is provided in the CMSSL library.



