SOLVING HYPERBOLIC PDES USING CONSERVATIVE
SUBDIVISION SCHEMES

MATS HOLMSTROM

Swedish Institute of Space Physics, Boz 812, SE-98128 Kiruna, Sweden
E-mail: matsh@irf.se

Explicit methods for solving hyperbolic PDEs on conservative form are presented.
The methods are finite volume versions of the finite difference methods presented
in [1]. Wavelet based conservative subdivision schemes provide an adaptive repre-
sentation of the solution by thresholding the coefficients of a wavelet representation.
The subdivision scheme leads to simple relations between the cell averages and the
wavelet coefficients. This provides a fast way to reconstruct any cell average, sim-
plifying the implementation of high order methods. The automatic adaptivity
leads to savings in computational time and memory requirement. The magnitude
of the wavelet coefficients also provide information about the local regularity of
the solution making it possible to use different numerical flux functions in different
parts of the domain. As an example, the one-dimensional magnetohydrodynamic
(MHD) equations are solved.

1 Introduction

One reason for using wavelet based methods when solving PDEs is that cer-
tain functions are well compressed in a wavelet basis. Assume that a time
dependent hyperbolic PDEs on conservative form is discretized by N cell av-
erages on a uniform grid. By compression is meant that the solution can be
represented by N, wavelet coefficients with an error proportional to &, where
N; < N. Using a wavelet based method for solving PDEs we can speed up
the computation of a solution by means of the sparse representation. The
sparsity also saves memory.

If the PDE is on conservative form, and the numerical method on a uni-
form grid is conservative, it is natural that also the wavelet transform used
should be conservative. The transform chosen in this paper is conservative
subdivision. A property of this transform is that each wavelet coefficient is
directly related to a cell average. This property makes the transformation
between cell averages and wavelet coefficients very fast.

The sparse representation proposed in this paper automatically adapts to
changes over time in the solution to the PDE. The accuracy of the solution is
determined by the threshold parameter €.

Another advantage of the sparse representation is that it allows for the
construction of locally uniform grids, allowing for the use of centered methods
and simplifying the implementation of higher order methods.

542

543

In a previous paper [1] by the author a sparse point representation for
finite difference schemes was introduced this work presents similar ideas in a
finite volume setting,.

2 Conservative Subdivision

A quick introduction to conservative subdivision, following Donoho [2]. This is
sometimes called average-interpolating subdivision but the former name seems
more informative. We define cell averages of a one-dimensional function u(z)

as
1 Tj k+1/2
Ujk = ———/ u(z) dz.
Az Tjk—-1/2

Here j denotes scale and k position, i.e. zjx = 277k. The cell size is Az =
Tjk+1/2 — Tjk—1/2-

If we, given cell averages on a coarser scale u;, want to find cell aver-
ages on a finer scale u;+1, (half the cell size) we find the (unique) quadratic
polynomial that has integrals u;x—i1, ujx and u;x+1; and then find uji 2k
and u;41,2¢k+1 by integrating the quadratic.

By repeating this recursively we can get a representation on an arbitrarily
fine scale. We can also use higher order, even, polynomials. Increasing the
order of the polynomial will increase the work, but improve compression of
smooth solutions. Boundaries are easily handled by the transform, we sim-
ply use the closest availible quadratic. The subdivision is very fast (a few
arithmetic operation for splitting a cell in two).

If we want to do the opposite, go from a fine uj1,x to a coarse grid u; x.
We have no choise due to conservation,

Ujk = 5 (Wjt1,2k + Ujt1,2k41) -

Now the difference between original cell averages u;i1,+ and averages
computed by subdivision from the coarser scale u;x can be viewed as wavelet
coefficients (or details)

djk = Uj+1,2k — Uj+1,2k

where @41 2¢ is computed by subdivision.

3 Sparse Representation

To get a sparse representation we threshold the wavelet coefficients, i.e., we
remove a coefficient if |dj x| < €. In practice we start at a coarsest scale

Figure 1. Sparse tree representation and corresponding grid.

and stop the transform when |d;x| < € for a cell. We then have a tree
representation as shown in Fig. 1 (a binary tree with cells as leaves). When the
solution evolves the representation can change by subdivision and coarsening
of cells governed by the size of |d;|. To allow for fine features to develop
one can choose between adding an extra layer of cells (subdivide all cells) or
refine a cell if |d; x| > €2. In this work the first approach was used.

The extension to higher-dimensional Cartesian grids is straight forward.
In two-dimensions we subdivide along rows, then along columns and stop if
the magnitude of all three wavelet coefficients < ¢. This gives us a quad-tree.
In three-dimensions we would get an oct-tree.

4 Time Evolution

We note that any cell average (on any level) can be found from the sparse
representation by subdivision or coarsening. Methods for uniform grids can
be used since we can always create a locally uniform grid, which simplifies
using higher order methods. '

We allow the solution to move, and features to develop by evolving the
solution in time as follows:

1. Threshold the sparse representation.
2. Subdivide each cell one step.

3. Advance the solution in time by computing numerical fluxes at cell bound-
aries.

@ o001 D& 003 004 005 008 007 008 008 01
'

Figure 2. Number of upwind fluxes over time (out of 1024).

] a1 02 03 o4 a5 o8 07 08 08 1
x

Figure 3. Plot of the density at ¢ = 0.1. Positions of upwind fluxes marked.

Finally a comparison of the CPU time and error for the different methods
is shown in Fig. 4. The error is at ¢ = 0.1 in 1-norm for different thresholds
on a grid with 1024 cells. We see that switch is fastest. This is the case since
it is a small, one-dimensional problem, and what dominates the CPU time are
the number of upwind fluxes due to the expensive eigen-decomposition. Tree
will probably compare more favorably if we use more points on the finest grid
(or go to higher dimensions).

7 Conclusions

We have presented a method to adaptively solve hyperbolic PDEs on conser-
vative form. The sparse tree representation provides savings in computational
time and memory. The transform used to construct the representation (Con-

547

Figure 4. CPU time as a function of error at ¢ = 0.1. Switch dotted, Tree & Switch solid,
Tree dashed.
servative Subdivision) is fast. It is possible to use methods for uniform grids

simplifying the use of higher order methods.

References

1

2.

. M. Holmstrém, Solving hyperbolic PDEs using interpolating wavelets.
To appear in STAM J. Sci. Computing.

D. L. Donoho, Smooth wavelet decompositions with blocky coefficient
kernels. In L. L. Schumaker and G. Webb, eds., Recent Advances in
Wavelet Analysis, pp. 259-308 (Academic Press, 1993).

M. Brio and C. C. Wu, An upwind differencing scheme for the equations
of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400-422 (1988).
. M. Gerritsen and P. Olsson, Designing an efficient solution strategy for
fluid flows. II. Stable high-order central finite difference schemes on com-
posite adaptive grids with sharp shock resolution. J. Comput. Phys. 147,
293-317 (1998).

A. Harten, Adaptive multiresolution schemes for shock computations. J.
Comput. Phys. 115, 319-338 (1994).

B. Sjogreen, Numerical experiments with the multiresolution scheme for
the compressible Euler equations. J. Comput. Phys. 117, 251-261
(1995).

